Câu hỏi:

30/11/2022 2,473

Tính đạo hàm của hàm số sau: \(y = {\sin ^3}\left( {2x + 1} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Bước đầu tiên áp dung công thức \({\left( {{u^\alpha }} \right)^/}\)với \(u = \sin \left( {2x + 1} \right)\)

Vậy \(y' = {\left( {{{\sin }^3}\left( {2x + 1} \right)} \right)^/} = 3{\sin ^2}\left( {2x + 1} \right).{\left( {\sin \left( {2x + 1} \right)} \right)^/}.\)

Tính \({\left( {\sin \left( {2x + 1} \right)} \right)^/}\): Áp dụng \({\left( {\sin u} \right)^/}\), với \(u = \left( {2x + 1} \right)\)

Ta được: \({\left( {\sin \left( {2x + 1} \right)} \right)^/} = \cos \left( {2x + 1} \right).{\left( {2x + 1} \right)^/} = 2\cos \left( {2x + 1} \right).\)

\( \Rightarrow y' = 3.{\sin ^2}\left( {2x + 1} \right).2\cos \left( {2x + 1} \right) = 6{\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP