Câu hỏi:

30/11/2022 2,659 Lưu

Tính đạo hàm của hàm số sau: \(y = {\sin ^3}\left( {2x + 1} \right)\).

A. \({\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)
B. \(12{\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)
C. \(3{\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)
D. \(6{\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Bước đầu tiên áp dung công thức \({\left( {{u^\alpha }} \right)^/}\)với \(u = \sin \left( {2x + 1} \right)\)

Vậy \(y' = {\left( {{{\sin }^3}\left( {2x + 1} \right)} \right)^/} = 3{\sin ^2}\left( {2x + 1} \right).{\left( {\sin \left( {2x + 1} \right)} \right)^/}.\)

Tính \({\left( {\sin \left( {2x + 1} \right)} \right)^/}\): Áp dụng \({\left( {\sin u} \right)^/}\), với \(u = \left( {2x + 1} \right)\)

Ta được: \({\left( {\sin \left( {2x + 1} \right)} \right)^/} = \cos \left( {2x + 1} \right).{\left( {2x + 1} \right)^/} = 2\cos \left( {2x + 1} \right).\)

\( \Rightarrow y' = 3.{\sin ^2}\left( {2x + 1} \right).2\cos \left( {2x + 1} \right) = 6{\sin ^2}\left( {2x + 1} \right)\cos \left( {2x + 1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. Media VietJack
B. Media VietJack
C. Media VietJack
D. Media VietJack

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

A.   Media VietJack
B. Media VietJack
C.  Media VietJack
D.   Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[ - 2\sin 2x\].
B. \[ - \cos \left( {\frac{\pi }{2} - 2x} \right)\].
C. \[2\sin 2x\].
D. \[\cos \left( {\frac{\pi }{2} - 2x} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[y' = - 2\sin \left( {\pi - 4x} \right) + \frac{\pi }{2} \cdot \]
B. \[y' = 2\sin \left( {\frac{\pi }{2} - x} \right)\cos \left( {\frac{\pi }{2} - x} \right) + \frac{\pi }{2}.\]
C. \[y' = 2\sin \left( {\frac{\pi }{2} - x} \right)\cos \left( {\frac{\pi }{2} - x} \right) + \frac{\pi }{2}x.\]
D. \[y' = - 2\sin \left( {\pi - 4x} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y' = 4\sin x + \sin 2x + 1.\]
B. \[y' = 4\sin 2x + 1.\]
C. \[y' = 1.\]
D. \[y' = 4\sin x - 2\sin 2x + 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[4\cos 2x + 2\sin 2x\].
B. \[2\cos 2x - 2\sin 2x\].
C. \[4\cos 2x - 2\sin 2x\].
D. \[ - 4\cos 2x - 2\sin 2x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP