Câu hỏi:

30/11/2022 325

Tính đạo hàm của hàm số sau: \(y = 2{\sin ^2}4x - 3{\cos ^3}5x\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Bước đầu tiên áp dụng \({\left( {u + v} \right)^/}\)

\(y' = {\left( {2{{\sin }^2}4x} \right)^/} - 3{\left( {{{\cos }^3}5x} \right)^/}\)

Tính \({\left( {{{\sin }^2}4x} \right)^/}\): Áp dụng \({\left( {{u^\alpha }} \right)^/}\), với \(u = \sin 4x,\) ta được:

\({\left( {{{\sin }^2}4x} \right)^/} = 2\sin 4x.{\left( {\sin 4x} \right)^/} = 2\sin 4x.\cos 4x{\left( {4x} \right)^/} = 4\sin 8x.\)

Tương tự: \({\left( {{{\cos }^3}5x} \right)^/} = 3{\cos ^2}5x.{\left( {\cos 5x} \right)^/} = 3{\cos ^2}5x.\left( { - \sin 5x} \right).{\left( {5x} \right)^/}\)

         \( = - 15{\cos ^2}5x.\sin 5x = \frac{{ - 15}}{2}cos5x.\sin 10x.\)

Kết luận: \(y' = 8\sin 8x + \frac{{45}}{2}cos5x.\sin 10x\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP