Câu hỏi:

30/11/2022 495

Tính đạo hàm của hàm số sau: \(y = {\left( {2 + {{\sin }^2}2x} \right)^3}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Áp dụng \({\left( {{u^\alpha }} \right)^/}\), với \(u = 2 + {\sin ^2}2x.\)

\(y' = 3{\left( {2 + {{\sin }^2}2x} \right)^2}{\left( {2 + {{\sin }^2}2x} \right)^/} = 3{\left( {2 + {{\sin }^2}2x} \right)^2}{\left( {{{\sin }^2}2x} \right)^/}.\)

Tính \({\left( {{{\sin }^2}2x} \right)^/},\) áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \sin 2x.\)

\({\left( {{{\sin }^2}2x} \right)^/} = 2.\sin 2x{\left( {\sin 2x} \right)^/} = 2.\sin 2x.\cos 2x{\left( {2x} \right)^/} = 2\sin 4x.\)

\( \Rightarrow y' = 6\sin 4x{\left( {2 + {{\sin }^2}2x} \right)^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP