Câu hỏi:
30/11/2022 971Xét hàm số \(f\left( x \right) = \sqrt[3]{{\cos 2x}}\). Chọn đáp án sai:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C.
\(f\left( {\frac{\pi }{2}} \right) = \sqrt[3]{{\cos 2.\frac{\pi }{2}}} = - 1\).
\[y = \sqrt[3]{{\cos 2x}} \Rightarrow {y^3} = \cos 2x \Rightarrow y'3{y^2} = - 2\sin 2x \Rightarrow y' = \frac{{ - 2\sin 2x}}{{3{{\left( {\sqrt[3]{{\cos 2x}}} \right)}^2}}}\].
\(f'\left( {\frac{\pi }{2}} \right) = 0\).
\(3.{\left( {\sqrt[3]{{\cos 2x}}} \right)^2}.\frac{{ - 2\sin 2x}}{{3{{\left( {\sqrt[3]{{\cos 2x}}} \right)}^2}}} + 2\sin 2x = - 2\sin 2x + 2\sin 2x = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 4:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
về câu hỏi!