Câu hỏi:
30/11/2022 444
Cho hàm số \(y = f(x) - {\cos ^2}x\) với \[f\left( x \right)\] là hàm liên tục trên \(\mathbb{R}\). Trong bốn biểu thức dưới đây, biểu thức nào xác định hàm \[f\left( x \right)\] thỏa mãn \[y' = 1\] với mọi \(x \in \mathbb{R}\)?
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn A.
Ta có: \(y' = f'\left( x \right) - 2.\cos x.\left( { - \sin x} \right) = f'\left( x \right) + 2.\cos x.\sin x = f'\left( x \right) + \sin 2x\)
\( \Rightarrow y' = 1 \Leftrightarrow f'\left( x \right) + \sin 2x = 1 \Leftrightarrow f'\left( x \right) = 1 - \sin 2x \Leftrightarrow f\left( x \right) = x + \frac{1}{2}\cos 2x\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Áp dụng bảng công thức đạo hàm của hàm số hợp :
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.