Câu hỏi:

30/11/2022 1,683

Cho hàm số \[y = \sqrt {x\tan x} \]. Xét hai đẳng thức sau:

\[(I){\rm{ }}y' = \frac{{x\left( {{{\tan }^2}x + \tan x + 1} \right)}}{{2\sqrt {x\tan x} }}\]                                              \[(II){\rm{   }}y' = \frac{{x{{\tan }^2}x + \tan x + 1}}{{2\sqrt {x\tan x} }}\]

Đẳng thức nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C.

Ta có: \(y' = \frac{{{{\left( {x.\tan x} \right)}^\prime }}}{{2.\sqrt {x.\tan x} }} = \frac{{x'.\tan x + x.{{\left( {\tan x} \right)}^\prime }}}{{2.\sqrt {x.\tan x} }} = \frac{{\tan x + x.\frac{1}{{{{\cos }^2}x}}}}{{2.\sqrt {x.\tan x} }} = \frac{{\tan x + x.\left( {1 + {{\tan }^2}x} \right)}}{{2.\sqrt {x.\tan x} }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Áp dụng bảng công thức đạo hàm của hàm số hợp Media VietJack:

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP