Câu hỏi:

30/11/2022 157

Tính đạo hàm của hàm số sau: \(y = {\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^3}\).

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Bước đầu tiên ta áp dụng công thức \({\left( {{u^\alpha }} \right)^/}\)với \(u = \frac{{\sin x}}{{1 + \cos x}}\)

\(y' = 3{\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^2}.{\left( {\frac{{\sin }}{{1 + \cos x}}} \right)^/}\)

Tính :\({\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^/} = \frac{{{{\left( {\sin x} \right)}^/}\left( {1 + \cos x} \right) - {{\left( {1 + \cos x} \right)}^/}.\sin x}}{{{{\left( {1 + \cos x} \right)}^2}}} = \frac{{\cos x\left( {1 + \cos x} \right) + {{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^2}}}\)

        \( = \frac{{\cos x + {{\cos }^2}x + {{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^2}}} = \frac{1}{{1 + \cos x}}\).

Vậy \(y' = 3{\left( {\frac{{\sin x}}{{1 + \cos x}}} \right)^2}.\frac{1}{{1 + \cos x}} = \frac{{3{{\sin }^2}x}}{{{{\left( {1 + \cos x} \right)}^3}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số Media VietJack  có đạo hàm là:

Xem đáp án » 29/11/2022 7,590

Câu 2:

Đạo hàm của hàm số Media VietJacklà:

Xem đáp án » 29/11/2022 6,739

Câu 3:

Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\]\(y'\) bằng

Xem đáp án » 30/11/2022 5,744

Câu 4:

Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\]

Xem đáp án » 30/11/2022 5,385

Câu 5:

Đạo hàm của hàm số \[y = 2{\sin ^2}x - \cos 2x + x\]

Xem đáp án » 29/11/2022 4,478

Câu 6:

Hàm số \(y = {\tan ^2}\frac{x}{2}\) có đạo hàm là:

Xem đáp án » 30/11/2022 3,735

Câu 7:

Hàm số \(y = \tan x - \cot x\) có đạo hàm là:

Xem đáp án » 29/11/2022 3,616

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn