Câu hỏi:
30/11/2022 1,545Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn D.
Áp dụng \({\left( {\sin u} \right)^/},\) với \(u = {\cos ^2}x{\tan ^2}x\)
\(y' = \cos \left( {{{\cos }^2}x.{{\tan }^2}x} \right).{\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/}.\)
Tính \({\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/},\) bước đầu sử dụng \({\left( {u.v} \right)^/},\) sau đó sử dụng \({\left( {{u^\alpha }} \right)^/}.\)
\({\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/} = {\left( {{{\cos }^2}x} \right)^/}.{\tan ^2}x + {\left( {{{\tan }^2}x} \right)^/}.{\cos ^2}x\)
\( = 2\cos x{\left( {\cos x} \right)^/}{\tan ^2}x + 2\tan x{\left( {\tan x} \right)^/}{\cos ^2}x\)
\( = - 2\sin x\cos x{\tan ^2}x + 2\tan x\frac{1}{{{{\cos }^2}x}}{\cos ^2}x = - \sin 2x{\tan ^2}x + 2\tan x.\)
Vậy \(y' = \cos \left( {{{\cos }^2}x.{{\tan }^2}x} \right)\left( { - \sin 2x{{\tan }^2}x + 2\tan x} \right)\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Áp dụng bảng công thức đạo hàm của hàm số hợp :
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.