Câu hỏi:

30/11/2022 1,092

Tính đạo hàm của hàm số sau: \(y = \sin \left( {{{\cos }^2}x.{{\tan }^2}x} \right)\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Áp dụng \({\left( {\sin u} \right)^/},\) với \(u = {\cos ^2}x{\tan ^2}x\)

\(y' = \cos \left( {{{\cos }^2}x.{{\tan }^2}x} \right).{\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/}.\)

Tính \({\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/},\) bước đầu sử dụng \({\left( {u.v} \right)^/},\) sau đó sử dụng \({\left( {{u^\alpha }} \right)^/}.\)

\({\left( {{{\cos }^2}x.{{\tan }^2}x} \right)^/} = {\left( {{{\cos }^2}x} \right)^/}.{\tan ^2}x + {\left( {{{\tan }^2}x} \right)^/}.{\cos ^2}x\)

\( = 2\cos x{\left( {\cos x} \right)^/}{\tan ^2}x + 2\tan x{\left( {\tan x} \right)^/}{\cos ^2}x\)

\( = - 2\sin x\cos x{\tan ^2}x + 2\tan x\frac{1}{{{{\cos }^2}x}}{\cos ^2}x = - \sin 2x{\tan ^2}x + 2\tan x.\)

Vậy \(y' = \cos \left( {{{\cos }^2}x.{{\tan }^2}x} \right)\left( { - \sin 2x{{\tan }^2}x + 2\tan x} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số Media VietJack  có đạo hàm là:

Xem đáp án » 29/11/2022 8,120

Câu 2:

Đạo hàm của hàm số Media VietJacklà:

Xem đáp án » 29/11/2022 7,285

Câu 3:

Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\]\(y'\) bằng

Xem đáp án » 30/11/2022 6,142

Câu 4:

Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\]

Xem đáp án » 30/11/2022 5,712

Câu 5:

Đạo hàm của hàm số \[y = 2{\sin ^2}x - \cos 2x + x\]

Xem đáp án » 29/11/2022 5,048

Câu 6:

Hàm số \(y = {\tan ^2}\frac{x}{2}\) có đạo hàm là:

Xem đáp án » 30/11/2022 4,232

Câu 7:

Hàm số \(y = \tan x - \cot x\) có đạo hàm là:

Xem đáp án » 29/11/2022 4,097

Bình luận


Bình luận
Vietjack official store