Câu hỏi:
30/11/2022 105Tính đạo hàm của hàm số sau: \(y = {\cos ^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn D.
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\)
\(y' = 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left[ {\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)} \right]^/} = - 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\sin \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}\)
\(y' = - \sin \left( {2\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}.\)
Tính \({\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/} = \frac{{{{\left( {\sqrt x + 1} \right)}^/}.\left( {\sqrt x - 1} \right) - {{\left( {\sqrt x - 1} \right)}^/}.\left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x - 1} \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\)
Vậy \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {2.\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 4:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
về câu hỏi!