Câu hỏi:
30/11/2022 120Tính đạo hàm của hàm số sau: \(y = {\sin ^2}\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn D.
Đầu tiên áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left[ {\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)} \right]^/}\)
Sau đó áp dụng \({\left( {\sin u} \right)^/},\) với \(u = \cos \left( {{{\tan }^4}3x} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\cos \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)^/}\)
Áp dụng \({\left( {\cos u} \right)^/},\) với \(u = {\tan ^4}3x.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).{\left( {{{\tan }^4}3x} \right)^/}.\)
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \tan 3x\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.{\left( {\tan 3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).{\left( {3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 4:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
về câu hỏi!