Câu hỏi:

01/12/2022 256

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = \sqrt {{x^2}} \). Giá trị \(f'\left( 0 \right)\) bằng

Đáp án chính xác

Siêu phẩm 30 đề thi thử THPT quốc gia 2024 do thầy cô VietJack biên soạn, chỉ từ 100k trên Shopee Mall.

Mua ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có : \(f'\left( x \right) = \frac{x}{{\sqrt {{x^2}} }}\)

\( \Rightarrow f'\left( x \right)\) không xác định tại \(x = 0\)

\( \Rightarrow f'\left( 0 \right)\) không có đạo hàm tại \(x = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = \sqrt {x - 1} \]. Đạo hàm của hàm số tại \(x = 1\)

Xem đáp án » 01/12/2022 7,570

Câu 2:

Cho hàm số\(f(x) = 2{x^3} + 1.\) Giá trị \(f'( - 1)\)bằng:

Xem đáp án » 01/12/2022 5,286

Câu 3:

Cho hàm số \(y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính \[y'\left( 0 \right)\]bằng:

Xem đáp án » 01/12/2022 4,448

Câu 4:

Cho hàm số\[f\left( x \right) = \frac{1}{x}\]. Đạo hàm của \(f\) tại \[x = \sqrt 2 \]

Xem đáp án » 01/12/2022 4,185

Câu 5:

Đạo hàm của hàm số \[f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \] tại điểm \[x = 1\] bằng:

Xem đáp án » 01/12/2022 3,349

Câu 6:

Đạo hàm của hàm số \(f(x) = \frac{{ - 3x + 4}}{{2x + 1}}\) tại điểm \(x = - 1\)

Xem đáp án » 01/12/2022 2,001

Câu 7:

Cho hàm số Media VietJack. Khi đó Media VietJack bằng:

Xem đáp án » 01/12/2022 1,635

Bình luận


Bình luận