Câu hỏi:

01/12/2022 366

Cho hàm số \(y = \frac{x}{{\sqrt {4 - {x^2}} }}.\) \(y'\left( 0 \right)\) bằng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A.

Ta có : \(y' = \frac{{\sqrt {4 - {x^2}} - x\frac{{ - x}}{{\sqrt {4 - {x^2}} }}}}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}} = \frac{4}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^3}}}\)

\( \Rightarrow y'\left( 0 \right) = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = \sqrt {x - 1} \]. Đạo hàm của hàm số tại \(x = 1\)

Xem đáp án » 01/12/2022 10,300

Câu 2:

Cho hàm số\(f(x) = 2{x^3} + 1.\) Giá trị \(f'( - 1)\)bằng:

Xem đáp án » 01/12/2022 6,694

Câu 3:

Cho hàm số \(y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính \[y'\left( 0 \right)\]bằng:

Xem đáp án » 01/12/2022 5,258

Câu 4:

Cho hàm số\[f\left( x \right) = \frac{1}{x}\]. Đạo hàm của \(f\) tại \[x = \sqrt 2 \]

Xem đáp án » 01/12/2022 4,985

Câu 5:

Đạo hàm của hàm số \[f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \] tại điểm \[x = 1\] bằng:

Xem đáp án » 01/12/2022 3,738

Câu 6:

Đạo hàm của hàm số \(f(x) = \frac{{ - 3x + 4}}{{2x + 1}}\) tại điểm \(x = - 1\)

Xem đáp án » 01/12/2022 2,394

Câu 7:

Cho hàm số \[f\left( x \right) = \frac{{2x}}{{x - 1}}\]. Giá trị \(f'\left( 1 \right)\)

Xem đáp án » 01/12/2022 2,157

Bình luận


Bình luận
Vietjack official store