Câu hỏi:

01/12/2022 1,037

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)bởi \(f\left( x \right) = \frac{{2x}}{{x - 1}}\). Giá trị của \(f'\left( { - 1} \right)\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn B.

Ta có : \(f'\left( x \right) = \frac{{2\left( {x - 1} \right) - 2x}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}\) \( \Rightarrow f'\left( { - 1} \right) = - \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án D.

Ta có \[f'\left( x \right) = \frac{1}{{2\sqrt {x - 1} }}\]

Câu 2

Lời giải

Hướng dẫn giải:

Chọn A

\(f(x) = 2{x^3} + 1\)\( \Rightarrow \)\(f'(x) = 6{x^2}\)\( \Rightarrow \)\(f'( - 1)\)\( = \)\(6.{( - 1)^2}\)\( = \)\(6.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP