Câu hỏi:
01/12/2022 127Cho hàm số \(f\left( x \right)\) xác định bởi \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} + 1} - 1}}{x}\,\,\,\left( {x \ne 0} \right)\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x = 0} \right)\end{array} \right.\). Giá trị \(f'\left( 0 \right)\) bằng:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Chọn C.
Ta có : \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} - 1}}{{{x^2}}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 1} + 1}} = \frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = \sqrt {x - 1} \]. Đạo hàm của hàm số tại \(x = 1\)là
Câu 3:
Cho hàm số \(y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính \[y'\left( 0 \right)\]bằng:
Câu 4:
Cho hàm số\[f\left( x \right) = \frac{1}{x}\]. Đạo hàm của \(f\) tại \[x = \sqrt 2 \] là
Câu 5:
Đạo hàm của hàm số \[f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \] tại điểm \[x = 1\] bằng:
Câu 6:
Đạo hàm của hàm số \(f(x) = \frac{{ - 3x + 4}}{{2x + 1}}\) tại điểm \(x = - 1\) là
về câu hỏi!