Câu hỏi:

01/12/2022 2,644 Lưu

Cho hàm số\(\;f\left( x \right) = \frac{{3{x^2} + 2x + 1}}{{2\sqrt {3{x^3} + 2{x^2} + 1} }}\). Giá trị\[\;f'\left( 0 \right)\]là:

A. \[\;0.\]
B. \[\frac{1}{2}.\]
C. Không tồn tại.
D. \[\;{\rm{1}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn B

\[\;f'\left( 0 \right) = \frac{{{{\left( {3{x^2} + 2x + 1} \right)}^\prime }.2\sqrt {3{x^3} + 2{x^2} + 1} - \left( {3{x^2} + 2x + 1} \right).{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^\prime }}}{{{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^2}}}\]

\( = \frac{{\left( {6x + 2} \right)2\sqrt {3{x^3} + 2{x^2} + 1} - \left( {3{x^2} + 2x + 1} \right)\frac{{9{x^2} + 4x}}{{\sqrt {3{x^3} + 2{x^2} + 1} }}}}{{{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^2}}} = \frac{{9{x^4} + 6{x^3} - 9{x^2} + 8x + 4}}{{4\left( {3{x^3} + 2{x^2} + 1} \right)\sqrt {3{x^3} + 2{x^2} + 1} }}\).

\[\;f'\left( 0 \right) = \frac{4}{8} = \frac{1}{2}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{1}{2}\].
B. \[1\].
C. \[0\]
D. Không tồn tại.

Lời giải

Hướng dẫn giải:

Đáp án D.

Ta có \[f'\left( x \right) = \frac{1}{{2\sqrt {x - 1} }}\]

Câu 2

A. \(6.\)
B. \(3.\)
C. \( - 2.\)
D. \( - 6.\)

Lời giải

Hướng dẫn giải:

Chọn A

\(f(x) = 2{x^3} + 1\)\( \Rightarrow \)\(f'(x) = 6{x^2}\)\( \Rightarrow \)\(f'( - 1)\)\( = \)\(6.{( - 1)^2}\)\( = \)\(6.\)

Câu 3

A. \[\frac{1}{2}.\]
B. \[ - \frac{1}{2}.\]
C. – 2.
D. Không tồn tại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y'\left( 0 \right) = \frac{1}{2}\).
B. \(y'\left( 0 \right) = \frac{1}{3}\).
C. \(y'\left( 0 \right) = 1\).
D. \(y'\left( 0 \right) = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{2}.\]
B. \[ - \frac{1}{2}.\]
C. \[\frac{1}{{\sqrt 2 }}.\]
D. \[ - \frac{1}{{\sqrt 2 }}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - \frac{5}{8}.\]
B. \[\frac{{25}}{{16}}.\]
C. \[\frac{5}{8}.\]
D. \[\frac{{11}}{8}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP