Câu hỏi:

01/12/2022 746

Cho \[f\left( x \right) = \frac{1}{x} + \frac{2}{{{x^2}}} + \frac{3}{{{x^3}}}\]. Tính \[f'\left( { - 1} \right)\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn A

Bước đầu tiên tính đạo hàm sử dụng công thức \[{\left( {\frac{1}{{{x^\alpha }}}} \right)^/} = \frac{{ - \alpha }}{{{x^{\alpha + 1}}}}\]

\[f'\left( x \right) = {\left( {\frac{1}{x} + \frac{2}{{{x^2}}} + \frac{3}{{{x^3}}}} \right)^/} = - \frac{1}{{{x^2}}} - \frac{4}{{{x^3}}} - \frac{9}{{{x^4}}}\]\[ \Rightarrow f'\left( 1 \right) = - 1 - 4 - 9 = - 14\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = \sqrt {x - 1} \]. Đạo hàm của hàm số tại \(x = 1\)

Xem đáp án » 01/12/2022 10,675

Câu 2:

Cho hàm số\(f(x) = 2{x^3} + 1.\) Giá trị \(f'( - 1)\)bằng:

Xem đáp án » 01/12/2022 6,826

Câu 3:

Cho hàm số \(y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính \[y'\left( 0 \right)\]bằng:

Xem đáp án » 01/12/2022 5,419

Câu 4:

Cho hàm số\[f\left( x \right) = \frac{1}{x}\]. Đạo hàm của \(f\) tại \[x = \sqrt 2 \]

Xem đáp án » 01/12/2022 5,061

Câu 5:

Đạo hàm của hàm số \[f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \] tại điểm \[x = 1\] bằng:

Xem đáp án » 01/12/2022 3,821

Câu 6:

Đạo hàm của hàm số \(f(x) = \frac{{ - 3x + 4}}{{2x + 1}}\) tại điểm \(x = - 1\)

Xem đáp án » 01/12/2022 2,420

Câu 7:

Cho hàm số \[f\left( x \right) = \frac{{2x}}{{x - 1}}\]. Giá trị \(f'\left( 1 \right)\)

Xem đáp án » 01/12/2022 2,380

Bình luận


Bình luận
Vietjack official store