Câu hỏi:

12/07/2024 905 Lưu

Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.

Tìm điểm M thuộc (d’): x – 2y – 1 = 0 sao cho từ M vẽ được hai tiếp tuyến đến (C) vuông góc với nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả tử từ M ta vẽ được hai tiếp tuyến MA, MB với đường tròn (C) tại A và B.

Xét tứ giác MAIB, có: \(\widehat {MAI} = \widehat {MBI} = \widehat {AMB} = 90^\circ \) nên MAIB là hình chữ nhật.

Mà IA = IB (= R) nên MAIB là hình vuông.

Do đó IM = \(2\sqrt 2 \).

Vì M thuộc (d’): x – 2y – 1 = 0 nên M(1 + 2t; t).

\( \Rightarrow \overrightarrow {IM} \left( {2t;\,t + 1} \right)\)

\( \Rightarrow \left| {\overrightarrow {IM} } \right| = \sqrt {4{t^2}\, + {{\left( {t + 1} \right)}^2}} = \sqrt {5{t^2} + 2t + 1} = 2\sqrt 2 \)

\( \Leftrightarrow 5{t^2} + 2t + 1 = 8\)

\( \Leftrightarrow 5{t^2} + 2t - 7 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - \frac{7}{5}\end{array} \right.\)

Vậy có hai điểm M thỏa mãn yêu cầu bài toán là: M(2; 2) và \(M\left( { - \frac{{14}}{5}; - \frac{2}{5}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cách xếp 8 bạn học sinh vào hai dãy ghế có 8 ghế là hoán vị của 8 nên \(n\left( \Omega \right) = 8! = 40\,\,320\) cách xếp.

Gọi A là biến cố bất cứ hai học sinh nào ngồi đối diện nhau khác trường với nhau.

Ta có sơ đồ sau:

Dãy ghế thứ nhất

1

2

3

4

Dãy ghế thứ hai

5

6

7

8

Ở ghế 1: có 8 cách chọn học sinh ngồi vào ghế

Ở ghế 5: có 4 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 2: có 6 cách chọn học sinh ngồi vào ghế

Ở ghế 6: có 3 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 3: có 4 cách chọn học sinh ngồi vào ghế

Ở ghế 7: có 2 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 4: có 2 cách chọn học sinh ngồi vào ghế

Ở ghế 8: có 1 cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Suy ra: n(A) = 8.4.6.3.4.2.2.1 = 9 216 cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.

Vì vậy \(P\left( A \right) = \frac{{9\,\,216}}{{40\,\,320}} = \frac{8}{{35}}\).

Lời giải

Đáp án đúng là: C

Ta có bảng tần số:

Điểm

1

2

3

4

5

6

7

8

9

10

Tần số

3

3

2

5

9

8

4

3

2

1

Khi đó điểm trung bình của lớp 10A là:

\(\overline x = \frac{{1.3 + 2.3 + 3.2 + 4.5 + 5.9 + 6.8 + 7.4 + 8.3 + 9.2 + 10.2}}{{40}} = 5,45\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP