Câu hỏi:

28/12/2022 1,591

Biết rằng trong khai triển \({\left( {\frac{x}{2} + \frac{a}{x}} \right)^5}\) (với x ≠ 0), hệ số của số hạng chứa \(\frac{1}{{{x^3}}}\) là 640. Khi đó giá trị của a bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có

\({\left( {\frac{x}{2} + \frac{a}{x}} \right)^5}\)

\( = {\left( {\frac{x}{2}} \right)^5} + 5.{\left( {\frac{x}{2}} \right)^4}.\left( {\frac{a}{x}} \right) + 10.{\left( {\frac{x}{2}} \right)^3}.{\left( {\frac{a}{x}} \right)^2}\)

     \( + 10.{\left( {\frac{x}{2}} \right)^2}.{\left( {\frac{a}{x}} \right)^3} + 5.\frac{x}{2}.{\left( {\frac{a}{x}} \right)^4} + {\left( {\frac{a}{x}} \right)^5}\)

\( = \frac{{{x^5}}}{{{2^5}}} + 5.\frac{{{x^4}}}{{{2^4}}}.\frac{a}{x} + 10.\frac{{{x^3}}}{{{2^3}}}.\frac{{{a^2}}}{{{x^2}}}\)\( + 10.\frac{{{x^2}}}{{{2^2}}}.\frac{{{a^3}}}{{{x^3}}} + 5.\frac{x}{2}.\frac{{{a^4}}}{{{x^4}}} + \frac{{{a^5}}}{{{x^5}}}\)

\[ = \frac{1}{{{2^5}}}{x^5} + \frac{{5a}}{{{2^4}}}{x^3} + \frac{{10.{a^2}}}{{{2^3}}}x\]\( + \frac{{10{a^3}}}{{{2^2}}}.\frac{1}{x} + \frac{{5{a^4}}}{2}.\frac{1}{{{x^3}}} + \frac{{{a^5}}}{{{x^5}}}\)

Số hạng chứa \(\frac{1}{{{x^3}}}\) trong khai triển \({\left( {\frac{x}{2} + \frac{a}{x}} \right)^5}\) là: \(\frac{{5{a^4}}}{2}.\frac{1}{{{x^3}}}\).

Theo đề, ta có hệ số của số hạng chứa \(\frac{1}{{{x^3}}}\) là 640.

Tức là, \(\frac{{5{a^4}}}{2} = 640\).

5a4 = 1 280

a4 = 256

a = 4 hoặc a = –4.

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Biểu thức nào sau đây là tam thức bậc hai?

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Ta có (C): x2 + y2 – 2x + 2y – 2 = 0

(x – 1)2 + (y + 1)2 = 4

Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.

a) Vì đường thẳng () song song với (d) nên () có dạng 4x – 3y + c = 0 .

Ta có đường thẳng () tiếp xúc với (C) nên:

d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)

\( \Leftrightarrow \left| {c + 7} \right| = 10\)

\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)

Câu 3

Trong mặt phẳng tọa độ Oxy cho tam giác ABC. Biết A(1; 3); B(2; 4) và C(5; 3). Tính góc giữa 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \(\overrightarrow {MN} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay