Câu hỏi:
28/12/2022 2,011
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Để khoảng cách AM là ngắn nhất thì M là hình chiếu của A lên đường thẳng d.
Khi đó AM vuông góc với d, do đó vectơ pháp tuyến của đường thẳng AM chính là vectơ chỉ phương của đường thẳng d.
Vectơ pháp tuyến của đường thẳng d là: \(\overrightarrow n = \left( {2;5} \right)\)
Vectơ chỉ phương của đường thẳng d là: \(\overrightarrow u = \left( {5; - 2} \right)\)
Khi đó \(\overrightarrow u = \left( {5; - 2} \right)\) là vectơ pháp tuyến của đường thẳng AM.
Phương trình đường thẳng AM là:
5.(x – 3) – 2.(y + 1) = 0 hay 5x – 2y – 17 = 0.
M là giao điểm của 2 đường thẳng AM và d nên tọa độ điểm M là nghiệm của hệ:
\(\left\{ \begin{array}{l}5x - 2y - 17 = 0\\2x + 5y - 10 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{105}}{{29}}\\y = \frac{{16}}{{29}}\end{array} \right.\) .
Vậy a = \(\frac{{105}}{{29}}\) và b = \(\frac{{16}}{{29}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.
Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Ta có (C): x2 + y2 – 2x + 2y – 2 = 0
⇔ (x – 1)2 + (y + 1)2 = 4
Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.
a) Vì đường thẳng (∆) song song với (d) nên (∆) có dạng 4x – 3y + c = 0 .
Ta có đường thẳng (∆) tiếp xúc với (C) nên:
d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)
\( \Leftrightarrow \left| {c + 7} \right| = 10\)
\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.