Câu hỏi:

28/12/2022 652

Phát biểu nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Phương án A sai. Vì biến cố có khả năng xảy ra cao hơn sẽ có xác suất lớn hơn biến cố có khả năng xảy ra thấp hơn.

Phương án B sai. Vì biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 1.

Phương án C sai. Vì biến cố có khả năng xảy ra càng thấp thì xác suất của nó càng gần 0.

Phương án D đúng theo Nguyên lí xác suất bé: Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

Vậy ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Biểu thức nào sau đây là tam thức bậc hai?

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Ta có (C): x2 + y2 – 2x + 2y – 2 = 0

(x – 1)2 + (y + 1)2 = 4

Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.

a) Vì đường thẳng () song song với (d) nên () có dạng 4x – 3y + c = 0 .

Ta có đường thẳng () tiếp xúc với (C) nên:

d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)

\( \Leftrightarrow \left| {c + 7} \right| = 10\)

\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)

Câu 3

Trong mặt phẳng tọa độ Oxy cho tam giác ABC. Biết A(1; 3); B(2; 4) và C(5; 3). Tính góc giữa 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \(\overrightarrow {MN} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay