Câu hỏi:

12/07/2024 3,677

b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

b) Gọi phương trình đường thẳng (d) có dạng y = ax + b (a ≠ 0).

A(3; 2) thuộc (d) nên ta có: 3a + b = 2 b = 2 – 3a (1).

Ta có đường thẳng (d) tiếp xúc với (C) nên:

d(I, (d)) = \(\frac{{\left| {a.1 - \left( { - 1} \right) + b} \right|}}{{\sqrt {{a^2} + {1^2}} }} = \frac{{\left| {a + b + 1} \right|}}{{\sqrt {{a^2} + 1} }} = 2\)

\( \Leftrightarrow \left| {a + b + 1} \right| = 2\sqrt {{a^2} + 1} \)

\( \Leftrightarrow \left| {a + 2 - 3a + 1} \right| = 2\sqrt {{a^2} + 1} \)

\( \Leftrightarrow \left| {3 - 2a} \right| = 2\sqrt {{a^2} + 1} \)

\( \Leftrightarrow 9 - 12a + 4{a^2} = 4\left( {{a^2} + 1} \right)\)

\( \Leftrightarrow - 12a = - 5\)

\( \Leftrightarrow a = \frac{5}{{12}}\) (thỏa mãn điều kiện)

\( \Rightarrow b = 2 - 3a = 2 - 3.\frac{5}{{12}} = \frac{3}{4}\)

Vậy phương trình đường thẳng (d) cần tìm là: 5x – 12y + 9 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Ta có (C): x2 + y2 – 2x + 2y – 2 = 0

(x – 1)2 + (y + 1)2 = 4

Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.

a) Vì đường thẳng () song song với (d) nên () có dạng 4x – 3y + c = 0 .

Ta có đường thẳng () tiếp xúc với (C) nên:

d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)

\( \Leftrightarrow \left| {c + 7} \right| = 10\)

\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP