Câu hỏi:

20/01/2023 838

Trong không gian với hệ tọa độ Oxyz, lập phương trình của các mặt phẳng song song với mặt phẳng (β):x+yz+3=0  và cách (β)  một khoảng bằng 3 .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi (α)  là mặt phẳng cần tìm. Ta có A(0;0;3)(β) .

Do (α)//(β)  nên phương trình của mặt phẳng (α)  có dạng:

x+yz+m=0 với m3 .

Ta có d((α),(β))=3d(A,(α))=3|m3|3=3 .

|m3|=3m=6m=0(thỏa mãn).

Vậy phương trình của các mặt phẳng cần tìm là

x+yz+6=0 x+yz=0 .

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:AB=2;3;1;AC=2;0;2.

AB;AC=30    12;12       22;22    3   0=6;6;6.

Chọn n=16AB;AC=1;1;1  là một vectơ pháp tuyến của mặt phẳng ABC.

Ta có phương trình mặt phẳng ABC.  là: x+y1z+2=0x+yz+1=0.

Vậy a=1,d=1.

Chọn A.

Lời giải

Do mặt phẳng (P)  chứa A,B  và song song với trục Oy  nên vectơ pháp tuyến của (P)  

n=[AB;j]=(4;0;1)

Phương trình mặt phẳng (P)  là:4(x0)+0(y0)1(z1)=04xz+1=0

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP