Câu hỏi:

22/01/2023 429

Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3)  và cắt các trục Ox,Oy,Oz  lần lượt tại ba điểm A,B,C  khác với gốc tọa độ O sao cho biểu thức 1OA2+1OB2+1OC2  có giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi H  là trực tâm ΔABC.  

Ta có BHACOBACAC(OBH)ACOH   1.

Chứng minh tương tự, ta có:  BCOH2 .

Từ (1), (2) ta có OH(ABC) .

Suy ra 1OA2+1OB2+1OC2=1OH2 .

Vậy để biểu thức 1OA2+1OB2+1OC2  đạt giá trị nhỏ nhất thì OH  đạt giá trị lớn nhất. Mà OHOM  nên OH đạt giá lớn nhất bằng OM hay HM.

Khi đó OM(ABC)  nên (P)  có một vectơ pháp tuyến là OM=(1;2;3) .

Phương trình mặt phẳng (P)  

1(x1)+2(y2)+3(z3)=0x+2y+3z14=0

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:AB=2;3;1;AC=2;0;2.

AB;AC=30    12;12       22;22    3   0=6;6;6.

Chọn n=16AB;AC=1;1;1  là một vectơ pháp tuyến của mặt phẳng ABC.

Ta có phương trình mặt phẳng ABC.  là: x+y1z+2=0x+yz+1=0.

Vậy a=1,d=1.

Chọn A.

Lời giải

Do mặt phẳng (P)  chứa A,B  và song song với trục Oy  nên vectơ pháp tuyến của (P)  

n=[AB;j]=(4;0;1)

Phương trình mặt phẳng (P)  là:4(x0)+0(y0)1(z1)=04xz+1=0

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP