Câu hỏi:

30/01/2023 1,679 Lưu

Trong mặt phẳng cho 2019 điểm phân biệt. Hỏi có tất cả bao nhiêu vectơ khác vectơ không mà có điểm đầu và điểm cuối thuộc 2019 điểm trên?

A. \(\frac{{2019!}}{{2!.2017!}}\).
B. \(\frac{{2019!}}{{2!}}\).
C. \(\frac{{2017!}}{{2019!}}\).
D. \(\frac{{2019!}}{{2017!}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng công thức tính tổ hợp \(C_n^k = \frac{{n!}}{{k!.\left( {n - k} \right)!}}\)

Cách giải:

Cứ 2 điểm bất kì trong 2019 điểm đã cho sẽ tạo thành 2 véctơ khác véctơ không.

Do đó có tất cả số véctơ là: \(2.C_{2019}^2 = 2.\frac{{2019!}}{{2!.2017!}} = \frac{{2019!}}{{2017!}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Sử dụng tỉ số và định lí Ta-lét.

Cách giải:

Media VietJack

Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).

Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.

Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)

Tương tự ta có \(NP = MP = 4\,cm\).

Do đó tam giác MNP là tam giác đều cạnh 4cm.

\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)

Câu 2

A. \(\frac{{SQ}}{{SD}} = \frac{1}{4}\).
B. \(\frac{{SQ}}{{SD}} = \frac{1}{3}\).
C. \(\frac{{SQ}}{{SD}} = \frac{1}{5}\).
D. \(\frac{{SQ}}{{SD}} = \frac{6}{{25}}\).

Lời giải

Đáp án A

Phương pháp:

Tìm điểm Q.

Sử dụng định lí Menelaus để tính tỉ số.

Cách giải:

Media VietJack

Trong \(\left( {ABCD} \right)\) lấy \(PH||MN\left( {H \in CD} \right)\)

Trong \(\left( {SCD} \right)\) gọi \(Q = NH \cap SD\)

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có: \(\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\)

Mà N là trung điểm của SC \( \Rightarrow \frac{{NC}}{{NS}} = 1\).

Mặt khác áp dụng định lí Ta-lét trong tam giác DPH ta có \(\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\) (vì P là trung điểm của OB).

Do đó ta có \(\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\)

Câu 3

A. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MI\); \(I = AB \cap CD\).
B. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MK\); \(K = MA \cap CD\).
C. \(\left( {ABM} \right) \cap \left( {SCD} \right) = ME\); \(E = MB \cap SC\).
D. \(\left( {ABM} \right) \cap \left( {SCD} \right) = MF\); \(F = MA \cap SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = - \frac{\pi }{6} + k2\pi \), \(k \in \mathbb{Z}\).
B. \(x = \frac{\pi }{6} + k\pi \), \(k \in \mathbb{Z}\).
C. \(x = - \frac{\pi }{6} + k\pi \), \(k \in \mathbb{Z}\).
D. \(x = - \frac{\pi }{3} + k2\pi \), \(k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP