Câu hỏi:

30/01/2023 258

Trong hệ trục tọa độ Oxy, cho \(\vec v\left( {3;3} \right)\) và đường tròn \(\left( C \right)\): \[{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\]. Tìm phương trình đường tròn \[\left( {C'} \right)\] là ảnh của \(\left( C \right)\) qua phép tịnh tiến \({T_{\vec v}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Áp dụng tính chất của phép tịnh tiến điểm M thành \(M'\) theo vectơ v thì \(\overrightarrow {MM'} = \vec v\).

Cách giải:

Đường tròn \(\left( C \right)\): \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) có tâm \(I\left( {1; - 2} \right)\); bán kính \(R = 3\).

Gọi \(I'\) là tâm đường tròn \(\left( {C'} \right)\).

Phép tịnh tiến điểm I thành điểm \(I'\) theo véc-tơ \(\vec v\left( {3;3} \right)\) thì \(\overrightarrow {II'} = \vec v\)

Suy ra \(I'\left( {4;1} \right)\)

Đường tròn \(\left( {C'} \right)\) có tâm là \(I'\left( {4;1} \right)\); \(R = 3\) nên có dạng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Sử dụng quy tắc nhân và cộng.

Cách giải:

Ta có \(8 = 2 + 6 = 3 + 5 = 4 + 4\)

Xác suất 1 lần tung là \(\frac{1}{6}\)

Nên gieo xúc sắc 2 lần thì sẽ có xác suất là \({\left( {\frac{1}{6}} \right)^2} = \frac{1}{{36}}\)

Với lần tung \(\left\{ {2;6} \right\}\); \(\left\{ {3;4} \right\}\) sẽ có 2 cách sắp xếp xuất hiện.

Do đó xác suất để thỏa mãn bài toán là \(\frac{1}{{36}}.2 + \frac{1}{{36}}.2 + \frac{1}{{36}} = \frac{5}{{36}}\)

Lời giải

Đáp án A

Phương pháp:

Sử dụng tỉ số và định lí Ta-lét.

Cách giải:

Media VietJack

Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).

Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.

Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)

Tương tự ta có \(NP = MP = 4\,cm\).

Do đó tam giác MNP là tam giác đều cạnh 4cm.

\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP