Câu hỏi:
30/01/2023 330
Trong hệ trục tọa độ Oxy, cho đường thẳng d: \(3x - y + 1 = 0\). Tìm phương trình đường thẳng \(d'\) là ảnh của d qua phép quay \(Q\left( {0; - 90^\circ } \right)\).
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Sử dụng tính chất của phép quay.
Cách giải:
Ta có \(\left( d \right)\): \(3x - y + 1 = 0\)
Gọi \(M\left( {0;1} \right) \in d\); Phép quay \({Q_{\left( {O; - 90^\circ } \right)}}\left( M \right) = M'\left( {a;b} \right)\)
\( \Rightarrow \overrightarrow {OM} \left( {0;1} \right)\); \(\overrightarrow {OM'} \left( {a;b} \right)\).
Phép quay \({Q_{\left( {O; - 90^\circ } \right)}}\left( d \right) = d'\) nên \(\left\{ \begin{array}{l}\overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0\\OM' = OM = 1\\\overrightarrow {OM'} .\overrightarrow {OM} = 0\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\{a^2} + {b^2} = 1\\b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\b = 0\\a = 1\left( {do\,\,\alpha = 90^\circ } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\M'\left( {1;0} \right)\end{array} \right.\)
Khi đó phương trình đường thẳng \(\left( {d'} \right)\) là \(x + 3y - 1 = 0\)Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
Sử dụng quy tắc nhân và cộng.
Cách giải:
Ta có \(8 = 2 + 6 = 3 + 5 = 4 + 4\)
Xác suất 1 lần tung là \(\frac{1}{6}\)
Nên gieo xúc sắc 2 lần thì sẽ có xác suất là \({\left( {\frac{1}{6}} \right)^2} = \frac{1}{{36}}\)
Với lần tung \(\left\{ {2;6} \right\}\); \(\left\{ {3;4} \right\}\) sẽ có 2 cách sắp xếp xuất hiện.
Do đó xác suất để thỏa mãn bài toán là \(\frac{1}{{36}}.2 + \frac{1}{{36}}.2 + \frac{1}{{36}} = \frac{5}{{36}}\)
Lời giải
Đáp án A
Phương pháp:
Sử dụng tỉ số và định lí Ta-lét.
Cách giải:
Gọi N, P lần lượt thuộc SB, SC sao cho \(\frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SM}}{{SA}}\).
Khi đó thiết diện của mặt phẳng qua M song song với \(\left( {ABC} \right)\) là tam giác MNP.
Áp dụng định lí ta-lét trong tam giác SAB có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3} = 4\)\(\left( {SM = 2MA;SA = 6} \right)\)
Tương tự ta có \(NP = MP = 4\,cm\).
Do đó tam giác MNP là tam giác đều cạnh 4cm.
\( \Rightarrow {S_{MNP}} = \frac{{\sqrt 3 }}{4}{.4^2} = 4\sqrt 3 c{m^2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.