Câu hỏi:
31/01/2023 592Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:
Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9 \[ \Rightarrow n\left( \Omega \right) = C_8^1 = 8\].
Gọi A là biến cố: “Số được chọn là số nguyên tố”.
Tập hợp các số nguyên tố là số nguyên dương nhỏ hơn 9 là \[\left\{ {2;3;5;7} \right\}\].
\[ \Rightarrow n\left( A \right) = C_4^1 = 4\].
Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
về câu hỏi!