Câu hỏi:
12/07/2024 4,996Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
a, b) Xác định 2 điểm chung của hai mặt phẳng.
c) Sử dụng định lí Ta-lét.
Cách giải:
a) Xét \[\left( {BMN} \right)\] và \[\left( {ABCD} \right)\] có:
+ B là điểm chung thứ nhất.
+ \[\left\{ \begin{array}{l}I \in MN \subset \left( {BMN} \right) \Rightarrow I \in \left( {BMN} \right)\\I \in AD \subset \left( {ABCD} \right) \Rightarrow I \in \left( {ABCD} \right)\end{array} \right. \Rightarrow I \in \left( {BMN} \right) \cap \left( {ABCD} \right) \Rightarrow I\] là điểm chung thứ hai.
Vậy \[\left( {BMN} \right) \cap \left( {ABCD} \right) = BI\]
b) Xét \[\left( {BMN} \right)\] và \[\left( {SCD} \right)\] có:
+ N là điểm chung thứ nhất.
+ \[J = BI \cap CD \Rightarrow \left\{ \begin{array}{l}J \in BI \subset \left( {BMN} \right) \Rightarrow J \in \left( {BMN} \right)\\J \in CD \subset \left( {SCD} \right) \Rightarrow J \in \left( {SCD} \right)\end{array} \right. \Rightarrow J \in \left( {BMN} \right) \cap \left( {SCD} \right) \Rightarrow J\] là điểm chung thứ hai.
Vậy \[\left( {BMN} \right) \cap \left( {SCD} \right) = NJ\]. Từ đó ta có thiết diện của hình chóp cắt bởi \[\left( {BMN} \right)\] là tứ giác BMNJ.
c) Trong \[\left( {SAD} \right)\] kẻ \[NE\parallel SA\left( {E \in AD} \right)\] ta có: \[\frac{{NE}}{{SA}} = \frac{{DN}}{{SD}} = \frac{1}{3} \Rightarrow \frac{{NE}}{{2MA}} = \frac{1}{3} \Leftrightarrow \frac{{NE}}{{MA}} = \frac{2}{3}\].
Mà \[\frac{{NE}}{{MA}} = \frac{{IN}}{{IM}} \Rightarrow \frac{{IN}}{{IM}} = \frac{2}{3} \Rightarrow \frac{{NI}}{{MN}} = 2\]
Mà IM là trung tuyến của tam giác \[SAI \Rightarrow N\] là trọng tâm tam giác SAI.
\[ \Rightarrow D\] là trung điểm của \[AI \Rightarrow \frac{{ID}}{{IA}} = \frac{1}{2} = \frac{{DJ}}{{AB}} = \frac{{DJ}}{{CD}} \Rightarrow J\] là trung điểm của CD.
\[ \Rightarrow \frac{{CJ}}{{AB}} = \frac{1}{2} = \frac{{KJ}}{{KB}} \Rightarrow KJ = \frac{1}{2}KB \Rightarrow IK = KJ + IJ = \frac{1}{2}KB + \frac{3}{2}KB = 2KB\]
Vậy \[\frac{{IN}}{{MN}} = \frac{{IK}}{{BK}} = 2 \Rightarrow BM\parallel KN\] (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 244
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận