Câu hỏi:

31/01/2023 1,797

Cho hình chóp S.ABCD đáy ABCD là hình vuông, biết \[AB = a,\angle SAD = 90^\circ \] và tam giác SAB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với SC, I là giao điểm của Dt và mặt phẳng \[\left( {SAB} \right)\]. Thiết diện của hình chóp S.ABCD với mặt phẳng \[\left( {AIC} \right)\] có diện tích là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+ Xác định điểm I.

+ Xác định thiết diện.

+ Sử dụng công thức He-rong để tính diện tích tam giác: \[{S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \].

Cách giải:

Media VietJack

Trong \[\left( {SCD} \right)\] kẻ \[Dt\parallel SC\]

Ta có \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\\left( {SAB} \right) \supset AB,\left( {SCD} \right) \supset CD\\AB\parallel CD\left( {gt} \right)\end{array} \right. \Rightarrow \] Giao tuyến của \[\left( {SAB} \right),\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD. Trong \[\left( {SAB} \right)\] kẻ \[Sx\parallel AB \Rightarrow \left( {SAB} \right) \cap \left( {SCD} \right) = Sx\]

Trong \[\left( {SCD} \right)\] gọi \[I = Dt \cap Sx\] ta có: \[\left\{ \begin{array}{l}I \in Dt\\I \in Sx \subset \left( {SAB} \right) \Rightarrow I \in \left( {SAB} \right)\end{array} \right. \Rightarrow I = Dt \cap \left( {SAB} \right)\].

Trong \[\left( {SCD} \right)\] gọi \[E = CI \cap SD\], khi đó thiết diện của chóp cắt bởi \[\left( {AIC} \right)\] là tam giác AEC.

ABCD là hình vuông cạnh \[a \Rightarrow AC = a\sqrt 2 \].

Dễ dàng chứng minh được SBAI, SCDI là hình bình hành \[ \Rightarrow AI = SB = a,E\] là trung điểm của SD, IC.

Tam giác SAD \[SA = AD = a,\angle SAD = 90^\circ \Rightarrow \Delta SAD\] vuông cân tại \[A \Rightarrow SD = SA\sqrt 2 = a\sqrt 2 \].

\[ \Rightarrow AE = \frac{1}{2}SD = \frac{{a\sqrt 2 }}{2}\]

Xét tam giác IAC có:

\[A{E^2} = \frac{{A{I^2} + A{C^2}}}{2} - \frac{{I{C^2}}}{4} \Leftrightarrow \frac{{{a^2}}}{2} = \frac{{{a^2} + 2{a^2}}}{2} - \frac{{I{C^2}}}{4}\]

\[ \Rightarrow \frac{{I{C^2}}}{4} = {a^2} \Leftrightarrow I{C^2} = 4{a^2} \Leftrightarrow IC = 2a \Rightarrow EC = \frac{1}{2}IC = a\]

Khi đó áp dụng công thức Hê-rông ta có: \[{S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \frac{{{a^2}\sqrt 7 }}{8}\]


CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MNAD.

a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].

b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].

c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].

Xem đáp án » 12/07/2024 3,332

Câu 2:

Cho 5 điểm A, B, C, D, E trong đó không có 4 điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?

Xem đáp án » 31/01/2023 1,363

Câu 3:

Số các số tự nhiên có 5 chữ số khác nhau lập được từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là:

Xem đáp án » 31/01/2023 1,325

Câu 4:

Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.

a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.

Xem đáp án » 12/07/2024 1,119

Câu 5:

Phương trình \[\cos x = 1\] có nghiệm là

Xem đáp án » 31/01/2023 846

Câu 6:

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9, xác suất để số được chọn là số nguyên tố bằng:

Xem đáp án » 31/01/2023 592

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL