Câu hỏi:

31/01/2023 2,876

Cho hình chóp S.ABCD đáy ABCD là hình vuông, biết \[AB = a,\angle SAD = 90^\circ \] và tam giác SAB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với SC, I là giao điểm của Dt và mặt phẳng \[\left( {SAB} \right)\]. Thiết diện của hình chóp S.ABCD với mặt phẳng \[\left( {AIC} \right)\] có diện tích là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+ Xác định điểm I.

+ Xác định thiết diện.

+ Sử dụng công thức He-rong để tính diện tích tam giác: \[{S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \].

Cách giải:

Media VietJack

Trong \[\left( {SCD} \right)\] kẻ \[Dt\parallel SC\]

Ta có \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\\left( {SAB} \right) \supset AB,\left( {SCD} \right) \supset CD\\AB\parallel CD\left( {gt} \right)\end{array} \right. \Rightarrow \] Giao tuyến của \[\left( {SAB} \right),\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD. Trong \[\left( {SAB} \right)\] kẻ \[Sx\parallel AB \Rightarrow \left( {SAB} \right) \cap \left( {SCD} \right) = Sx\]

Trong \[\left( {SCD} \right)\] gọi \[I = Dt \cap Sx\] ta có: \[\left\{ \begin{array}{l}I \in Dt\\I \in Sx \subset \left( {SAB} \right) \Rightarrow I \in \left( {SAB} \right)\end{array} \right. \Rightarrow I = Dt \cap \left( {SAB} \right)\].

Trong \[\left( {SCD} \right)\] gọi \[E = CI \cap SD\], khi đó thiết diện của chóp cắt bởi \[\left( {AIC} \right)\] là tam giác AEC.

ABCD là hình vuông cạnh \[a \Rightarrow AC = a\sqrt 2 \].

Dễ dàng chứng minh được SBAI, SCDI là hình bình hành \[ \Rightarrow AI = SB = a,E\] là trung điểm của SD, IC.

Tam giác SAD \[SA = AD = a,\angle SAD = 90^\circ \Rightarrow \Delta SAD\] vuông cân tại \[A \Rightarrow SD = SA\sqrt 2 = a\sqrt 2 \].

\[ \Rightarrow AE = \frac{1}{2}SD = \frac{{a\sqrt 2 }}{2}\]

Xét tam giác IAC có:

\[A{E^2} = \frac{{A{I^2} + A{C^2}}}{2} - \frac{{I{C^2}}}{4} \Leftrightarrow \frac{{{a^2}}}{2} = \frac{{{a^2} + 2{a^2}}}{2} - \frac{{I{C^2}}}{4}\]

\[ \Rightarrow \frac{{I{C^2}}}{4} = {a^2} \Leftrightarrow I{C^2} = 4{a^2} \Leftrightarrow IC = 2a \Rightarrow EC = \frac{1}{2}IC = a\]

Khi đó áp dụng công thức Hê-rông ta có: \[{S_{\Delta AEC}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \frac{{{a^2}\sqrt 7 }}{8}\]


CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MNAD.

a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].

b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].

c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].

Xem đáp án » 12/07/2024 4,706

Câu 2:

Cho 5 điểm A, B, C, D, E trong đó không có 4 điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?

Xem đáp án » 31/01/2023 1,739

Câu 3:

Số các số tự nhiên có 5 chữ số khác nhau lập được từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là:

Xem đáp án » 31/01/2023 1,527

Câu 4:

Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.

a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.

Xem đáp án » 12/07/2024 1,266

Câu 5:

Phương trình \[\cos x = 1\] có nghiệm là

Xem đáp án » 31/01/2023 1,127

Câu 6:

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9, xác suất để số được chọn là số nguyên tố bằng:

Xem đáp án » 31/01/2023 790

Bình luận


Bình luận
Vietjack official store