Câu hỏi:

31/01/2023 2,101

Trong khai triển nhị thức \[{\left( {8{a^3} - \frac{b}{2}} \right)^6}\], số hạng thứ 4 là:

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Sử dụng công thức khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]

Cách giải:

Ta có: \[{\left( {8{a^3} - \frac{b}{2}} \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{{\left( {8{a^3}} \right)}^{6 - k}}.{{\left( { - \frac{b}{2}} \right)}^k}} \]

Số hạng thứ 4 ứng với \[k = 3\] nên số hạng đó là \[C_6^3{\left( {8{a^3}} \right)^{6 - 3}}.{\left( { - \frac{b}{2}} \right)^3} = - C_6^3{.8^3}.{a^9}.\frac{{{b^3}}}{8} = - 1280{a^9}{b^3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2

Xem đáp án » 01/02/2023 3,320

Câu 2:

Nghiệm của phương trình \[2\cos x + 1 = 0\]

Xem đáp án » 31/01/2023 2,488

Câu 3:

Tìm hệ số của \[{x^{16}}\] trong khai triển \[{\left( {{x^2} - 3x} \right)^{10}}\]

Xem đáp án » 31/01/2023 2,454

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].

a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).

b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?

Xem đáp án » 13/07/2024 2,363

Câu 5:

Nếu \[2A_n^4 = 3A_{n - 1}^4\] thì n bằng

Xem đáp án » 01/02/2023 1,740

Câu 6:

Cho 6 chữ số 4,5,6,7,8,9. Hỏi có bao nhiêu số gồm 3 chữ số khác nhau được lập thành từ 6 chữ số đó?

Xem đáp án » 31/01/2023 1,220

Bình luận


Bình luận
Vietjack official store