Câu hỏi:
13/07/2024 2,549
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng cách tìm giao tuyến hai mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng
+ Sử dụng định lý Ta-lét để tìm tỉ số
Cách giải:
a)
* Trong \[\left( {SBC} \right)\], kéo dài NK cắt SB tại G
Khi đó \[\left\{ \begin{array}{l}MG \subset \left( {MNK} \right)\\MG \subset \left( {SBC} \right)\end{array} \right.\] nên \[\left( {MNK} \right) \cap \left( {SAB} \right) = MG\]
* Trong (SAB), gọi MG cắt AB tại H
Khi đó \[\left\{ \begin{array}{l}H \in MG \subset \left( {MNK} \right)\\H \in AB\end{array} \right.\] nên H là giao điểm của AB với (MNK)
b)
* Xác định thiết diện
Gọi \[AC \cap BD = \left\{ O \right\}\], trong (SAC) có \[SO \cap MK = \left\{ I \right\}\]
Trong (ABCD) có \[BD \cap HN = \left\{ E \right\}\]
Trong (SBD) có \[EI \cap SD = \left\{ P \right\}\]
Khi đó ta có \[\left( {MNK} \right) \equiv \left( {MPKNH} \right)\]
Hay \[\left\{ \begin{array}{l}\left( {MNK} \right) \cap \left( {SBC} \right) = NK\\\left( {MNK} \right) \cap \left( {SAB} \right) = MH\\\left( {MNK} \right) \cap \left( {SAD} \right) = MP\\\left( {MNK} \right) \cap \left( {SDC} \right) = PK\\\left( {MNK} \right) \cap \left( {ABCD} \right) = NH\end{array} \right.\]
Nên thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNK) là ngũ giác PMHNK.
* Tính tỉ số \[\frac{{HA}}{{HB}}\]
Trong ∆SQK kẻ \[BF//SK\left( {F \in QK} \right)\]
Khi đó \[\frac{{NB}}{{NC}} = \frac{{KC}}{{BF}}\] (theo Ta-let) mà \[NB = NC \Rightarrow KC = BF\]
Mà \[\frac{{KC}}{{SK}} = \frac{1}{2}\] suy ra \[\frac{{BF}}{{SK}} = \frac{1}{2}\] mà \[BF//SK \Rightarrow \] BF là đường trung bình của ∆GQK.
Do đó B là trung điểm của SG
Trong ∆GMS kẻ \[BQ//SA\left( {Q \in GM} \right)\] mà B là trung điểm của SG nên QB là đường trung bình của ∆GSM
Suy ra \[\frac{{QB}}{{SM}} = \frac{1}{2} \Rightarrow \frac{{QB}}{{MA}} = \frac{1}{2}\] (do \[SM = MA\])
Vì \[QB//AM\], theo định lét Ta-let ta có \[\frac{{QB}}{{MA}} = \frac{{HB}}{{HA}} = \frac{1}{2} \Rightarrow \frac{{HA}}{{HB}} = 2\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]
Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”
TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn
TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn
Số phần tử của biến cố A là \[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]
Lời giải
Đáp án D
Phương pháp:
Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]
Cách giải:
Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.