Câu hỏi:

13/07/2024 1,926

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].

a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).

b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

+ Sử dụng cách tìm giao tuyến hai mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng

+ Sử dụng định lý Ta-lét để tìm tỉ số

Cách giải:

Media VietJack

a)

* Trong \[\left( {SBC} \right)\], kéo dài NK cắt SB tại G

Khi đó \[\left\{ \begin{array}{l}MG \subset \left( {MNK} \right)\\MG \subset \left( {SBC} \right)\end{array} \right.\] nên \[\left( {MNK} \right) \cap \left( {SAB} \right) = MG\]

* Trong (SAB), gọi MG cắt AB tại H

Khi đó \[\left\{ \begin{array}{l}H \in MG \subset \left( {MNK} \right)\\H \in AB\end{array} \right.\] nên H là giao điểm của AB với (MNK)

b)

* Xác định thiết diện

Gọi \[AC \cap BD = \left\{ O \right\}\], trong (SAC) \[SO \cap MK = \left\{ I \right\}\]

Trong (ABCD) \[BD \cap HN = \left\{ E \right\}\]

Trong (SBD) \[EI \cap SD = \left\{ P \right\}\]

Khi đó ta có \[\left( {MNK} \right) \equiv \left( {MPKNH} \right)\]

Hay \[\left\{ \begin{array}{l}\left( {MNK} \right) \cap \left( {SBC} \right) = NK\\\left( {MNK} \right) \cap \left( {SAB} \right) = MH\\\left( {MNK} \right) \cap \left( {SAD} \right) = MP\\\left( {MNK} \right) \cap \left( {SDC} \right) = PK\\\left( {MNK} \right) \cap \left( {ABCD} \right) = NH\end{array} \right.\]

Nên thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNK) là ngũ giác PMHNK.

* Tính tỉ số \[\frac{{HA}}{{HB}}\]

Trong ∆SQK kẻ \[BF//SK\left( {F \in QK} \right)\]

Khi đó \[\frac{{NB}}{{NC}} = \frac{{KC}}{{BF}}\] (theo Ta-let) mà \[NB = NC \Rightarrow KC = BF\]

\[\frac{{KC}}{{SK}} = \frac{1}{2}\] suy ra \[\frac{{BF}}{{SK}} = \frac{1}{2}\]\[BF//SK \Rightarrow \] BF là đường trung bình của ∆GQK.

Do đó B là trung điểm của SG

Trong ∆GMS kẻ \[BQ//SA\left( {Q \in GM} \right)\]B là trung điểm của SG nên QB là đường trung bình của ∆GSM

Suy ra \[\frac{{QB}}{{SM}} = \frac{1}{2} \Rightarrow \frac{{QB}}{{MA}} = \frac{1}{2}\] (do \[SM = MA\])

\[QB//AM\], theo định lét Ta-let ta có \[\frac{{QB}}{{MA}} = \frac{{HB}}{{HA}} = \frac{1}{2} \Rightarrow \frac{{HA}}{{HB}} = 2\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2

Xem đáp án » 01/02/2023 2,900

Câu 2:

Tìm hệ số của \[{x^{16}}\] trong khai triển \[{\left( {{x^2} - 3x} \right)^{10}}\]

Xem đáp án » 31/01/2023 2,366

Câu 3:

Trong khai triển nhị thức \[{\left( {8{a^3} - \frac{b}{2}} \right)^6}\], số hạng thứ 4 là:

Xem đáp án » 31/01/2023 1,975

Câu 4:

Nghiệm của phương trình \[2\cos x + 1 = 0\]

Xem đáp án » 31/01/2023 1,850

Câu 5:

Nếu \[2A_n^4 = 3A_{n - 1}^4\] thì n bằng

Xem đáp án » 01/02/2023 1,622

Câu 6:

Cho 6 chữ số 4,5,6,7,8,9. Hỏi có bao nhiêu số gồm 3 chữ số khác nhau được lập thành từ 6 chữ số đó?

Xem đáp án » 31/01/2023 1,139

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store