Câu hỏi:
12/07/2024 2,820
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
a) Sử dụng công thức khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]
b) Đếm số phần tử của không gian mẫu: Số các số có 4 chữ số lập được từ các chữ số đã cho.
Đếm số các số chia hết cho 5 trong tập hợp trên và suy ra xác suất.
Cách giải:
a) Ta có: \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5} = \sum\limits_{k = 0}^5 {C_5^k{{\left( {2{x^2}} \right)}^{5 - k}}.{{\left( {\frac{1}{{{x^3}}}} \right)}^k}} \]
\[ = \sum\limits_{k = 0}^5 {C_5^k{{.2}^{5 - k}}.{{\left( {\frac{1}{{{x^3}}}} \right)}^k}} = \sum\limits_{k = 0}^5 {C_5^k{{.2}^{5 - k}}.{x^{10 - 2k - 3k}}} = \sum\limits_{k = 0}^5 {C_5^k{{.2}^{5 - k}}.{x^{10 - 5k}}} \]
Số hạng không chứa x ứng với \[10 - 5k = 0 \Leftrightarrow k = 2\] nên hệ số \[C_5^2{.2^{5 - 2}} = 80\]
Vậy số hạng không chứa x trong khai triển là 80.
b) Số cách chọn 4 trong 8 chữ số 0; 1; 2; 3; 4; 5; 6; 7 có phân biệt thứ tự là \[A_8^4\]
Nếu chữ số 0 ở đầu thì có \[A_7^3\] số thỏa mãn.
Do đó số các số có 4 chữ số phân biệt lập được là \[A_8^4 - A_7^3\].
Gọi số có 4 chữ số chia hết cho 5 là \[\overline {abcd} \], với \[a,b,c,d \in \left\{ {0;1;2;3;4;5;6;7} \right\}\]
Vì \[\overline {abcd} \vdots 5\] nên \[d = 0\] hoặc \[d = 5\]
+) Nếu \[d = 0\] thì \[a \in \left\{ {1;2;3;4;5;6;7} \right\}\] có 7 cách chọn.
\[b \ne a,d \Rightarrow \] b có 6 cách chọn.
\[c \ne a,b,d\] nên có 5 cách chọn.
Có \[7.6.5 = 210\] số tự nhiên có bốn chữ số, tận cùng bằng 0 được lập từ các chữ số \[0;1;2;3;4;5;6;7\]
+) Nếu \[d = 5\] thì \[a \in \left\{ {1;2;3;4;5;6;7} \right\}\] có 6 cách chọn.
\[b \ne a,d \Rightarrow \] b có 6 cách chọn.
\[c \ne a,b,d\] nên có 5 cách chọn.
Có \[6.6.5 = 180\] số tự nhiên có bốn chữ số, tận cùng bằng 5 được lập từ các chữ số \[0;1;2;3;4;5;6;7\].
Do đó có \[210 + 180 = 390\] số có bốn chữ số chia hết cho 5 được lập từ các chữ số \[0;1;2;3;4;5;6;7\].
Vậy xác suất là \[P = \frac{{390}}{{A_8^4 - A_7^3}} = \frac{{390}}{{1470}} = \frac{{13}}{{49}}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
- Tính số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Số phần tử của không gian mẫu: \[n\left( \Omega \right) = C_{100}^3\]
Gọi A là biến cố “chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2”
TH1: Chọn được cả 3 tấm thẻ mang số chẵn. Khi đó có \[C_{50}^3\] cách chọn
TH2: Chọn được hai tấm thẻ mang số lẻ và một tấm thẻ mang số chẵn. Khi đó có \[C_{50}^2C_{50}^1\] cách chọn
Số phần tử của biến cố A là \[n\left( A \right) = C_{50}^3 + C_{50}^2C_{50}^1\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{50}^3 + C_{50}^2C_{50}^1}}{{C_{100}^3}} = \frac{1}{2}\]
Lời giải
Đáp án D
Phương pháp:
Biến đổi phương trình về dạng \[\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \]
Cách giải:
Ta có: \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \frac{{2\pi }}{3} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.