Cho hình chóp S.ABCD, biết AC cắt BD tại M, AB cắt CD tại O. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) .
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Xác định các điểm chung của hai mặt phẳng.

Cách giải:
Ta có\[AB \cap CD = O \Rightarrow \left\{ \begin{array}{l}O \in AB \subset \left( {SAB} \right) \Rightarrow O \in \left( {SAB} \right)\\O \in CD \subset \left( {SCD} \right) \Rightarrow O \in \left( {SCD} \right)\end{array} \right..\]
\[ \Rightarrow O \in \left( {SAB} \right) \cap \left( {SCD} \right)\]
Lại có \[S \in \left( {SAB} \right) \cap \left( {SCD} \right).\]
Vậy \[\left( {SAB} \right) \cap \left( {SCD} \right) = SO.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án A
Phương pháp:
Xét trên đường tròn lượng giác.

Cách giải:
Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]
Biểu diễn trên đường tròn lượng giác:
Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]
Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]
Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]
Lời giải
Cách giải:

a) Xét \[\left( {SAI} \right)\]có \[\left\{ \begin{array}{l}\frac{{SM}}{{SA}} = \frac{1}{2}\\\frac{{SG}}{{SI}} = \frac{3}{5}\end{array} \right. \Rightarrow \frac{{SM}}{{SA}} \ne \frac{{SG}}{{SI}} \Rightarrow MG\]không song song với AI.
Gọi \[AI \cap MG = \left\{ E \right\} \Rightarrow \left\{ \begin{array}{l}E \in MG\\E \in AI \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MG \cap \left( {ABCD} \right) = \left\{ E \right\}.\]
b) Xét mặt phẳng \[\left( {SBC} \right)\]có: \[\left\{ \begin{array}{l}\frac{{SN}}{{SB}} = \frac{1}{2}\\\frac{{SG}}{{SI}} = \frac{3}{5}\end{array} \right. \Rightarrow \frac{{SN}}{{SB}} \ne \frac{{SG}}{{SI}} \Rightarrow NG\]không song song với BC.
Gọi\[NG \cap SC = \left\{ K \right\} \Rightarrow \left\{ \begin{array}{l}K \in NG \subset \left( {MNG} \right)\\K \in SC \subset \left( {SBC} \right)\end{array} \right..\]
Ta có\[\left( {MNG} \right) \cap \left( {SAB} \right) = MN;\left( {MNG} \right) \cap \left( {SBC} \right) = NK.\]
Xét\[\left( {SAB} \right)\] có \[MN\parallel AB \Rightarrow MN\parallel CD.\]
Ta có \[MN\parallel CD,MN \subset \left( {MNG} \right),CD \subset \left( {SCD} \right)\]và \[K = \left( {SCD} \right) \cap \left( {MNG} \right)\]nên từ K kẻ đường thẳng\[Kx\parallel CD\], gọi\[Kx \cap SD = L.\]
\[ \Rightarrow KL = \left( {SCD} \right) \cap \left( {MNG} \right)\].
Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng\[\left( {MNG} \right)\]là hình thang\[MNKL\left( {MN\parallel KL} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.