Câu hỏi:

01/02/2023 7,059 Lưu

Tìm số hạng không chứa x trong khai triển\[{\left( {{x^3} - \frac{1}{x}} \right)^{12}}.\]

A. – 220
B. 220
C. 924
D. – 924

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

Khai triển Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}.} \)

Cách giải:

\({\left( {{x^3} - \frac{1}{x}} \right)^{12}} = \sum\limits_{k = 0}^n {C_{12}^k{{\left( {{x^3}} \right)}^{12 - k}}{{\left( { - \frac{1}{x}} \right)}^k} = \sum\limits_{k = 0}^n {C_{12}^k{{\left( { - 1} \right)}^k}{x^{36 - 4k}}.} } \)

Số hạng không chứa x ứng với \(36 - 4k = 0 \Leftrightarrow k = 9.\)

Vậy số hạng không chứa x trong khai triển trên là \(C_{12}^9{\left( { - 1} \right)^9} = - 220.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Lời giải

Đáp án A

Phương pháp:

Xác định các điểm chung của hai mặt phẳng.

Media VietJack

Cách giải:

Ta có\[AB \cap CD = O \Rightarrow \left\{ \begin{array}{l}O \in AB \subset \left( {SAB} \right) \Rightarrow O \in \left( {SAB} \right)\\O \in CD \subset \left( {SCD} \right) \Rightarrow O \in \left( {SCD} \right)\end{array} \right..\]

\[ \Rightarrow O \in \left( {SAB} \right) \cap \left( {SCD} \right)\]

Lại có \[S \in \left( {SAB} \right) \cap \left( {SCD} \right).\]

Vậy \[\left( {SAB} \right) \cap \left( {SCD} \right) = SO.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = \cos x\]
B. \[y = \tan x\]
C. \[y = \cot x\]
D. \[y = \sin x\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = \sin \left( {\frac{\pi }{2} - x} \right)\]
B. \[y = \tan x\]
C. \[y = \sin x\]
D. \[y = \sin \left( {x + \frac{\pi }{6}} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP