Câu hỏi:

01/02/2023 167

Cho ba điểm\[A\left( {1;2} \right),B\left( {2;3} \right),C\left( {6;7} \right)\]. Giả sử qua phép tịnh tiến theo vectơ \[\overrightarrow u \]các điểm A, B, C lần lượt biến thành các điểm\[A'\left( {2;0} \right),B',C'\]. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

\[{T_{\overrightarrow u }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow u .\]

Cách giải:

Ta có\[\overrightarrow {AA'} = \left( {1; - 2} \right).\]\[{T_{\overrightarrow u }}\left( A \right) = A' \Leftrightarrow \overrightarrow {AA'} = \overrightarrow u = \left( {1; - 2} \right)\], do đó các đáp án C, D sai.

\[{T_{\overrightarrow u }}\left( B \right) = B' \Leftrightarrow \overrightarrow {BB'} = \overrightarrow u \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 2 = 1\\{y_{B'}} - 3 = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 3\\{y_{B'}} = 1\end{array} \right. \Rightarrow B'\left( {3;1} \right)\]

\[{T_{\overrightarrow u }}\left( C \right) = C' \Leftrightarrow \overrightarrow {CC'} = \overrightarrow u \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - 6 = 1\\{y_{C'}} - 7 = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = 7\\{y_{C'}} = 5\end{array} \right. \Rightarrow C'\left( {7;5} \right)\]

Vậy đáp án B đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Xét trên đường tròn lượng giác.

Media VietJack

Cách giải:

Ta có\[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right] \Rightarrow 2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right].\]

Biểu diễn trên đường tròn lượng giác:

Dựa vào đường tròn lượng giác ta thấy với\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};1} \right].\]

Vậy\[M = 1;m = - \frac{1}{2} \Rightarrow T = M - 2m = 1 - 2.\left( { - \frac{1}{2}} \right) = 2.\]

Chú ý: Cần biểu diễn trên đường tròn lượng giác, nhiều học sinh nhầm lẫn\[2x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right] \Rightarrow \cos 2x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\]

Lời giải

Phương pháp:

Liệt kê các bộ ba số có tổng bằng 11.

Cách giải:

Lấy ngẫu nhiên 3 thẻ từ một hộp 8 thẻ \[ \Rightarrow n\left( \Omega \right) = C_8^3 = 56\]cách.

Gọi A là biến cố: “Tổng các số ghi trên ba thẻ đó bằng 11”.

\[ \Rightarrow A = \left\{ {\left( {1;2;8} \right),\left( {1;3;7} \right),\left( {1;4;6} \right),\left( {2;3;6} \right),\left( {2;4;5} \right)} \right\} \Rightarrow n\left( A \right) = 5.\]

Vậy\[P\left( A \right) = \frac{5}{{56}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hàm số nào sau đây đồng biến trên khoảng\[\left( {\frac{\pi }{2};\pi } \right)\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay