Câu hỏi:

01/02/2023 149

Cho ba điểm\[A\left( {1;2} \right),B\left( {2;3} \right),C\left( {6;7} \right)\]. Giả sử qua phép tịnh tiến theo vectơ \[\overrightarrow u \]các điểm A, B, C lần lượt biến thành các điểm\[A'\left( {2;0} \right),B',C'\]. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

\[{T_{\overrightarrow u }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow u .\]

Cách giải:

Ta có\[\overrightarrow {AA'} = \left( {1; - 2} \right).\]\[{T_{\overrightarrow u }}\left( A \right) = A' \Leftrightarrow \overrightarrow {AA'} = \overrightarrow u = \left( {1; - 2} \right)\], do đó các đáp án C, D sai.

\[{T_{\overrightarrow u }}\left( B \right) = B' \Leftrightarrow \overrightarrow {BB'} = \overrightarrow u \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 2 = 1\\{y_{B'}} - 3 = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 3\\{y_{B'}} = 1\end{array} \right. \Rightarrow B'\left( {3;1} \right)\]

\[{T_{\overrightarrow u }}\left( C \right) = C' \Leftrightarrow \overrightarrow {CC'} = \overrightarrow u \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - 6 = 1\\{y_{C'}} - 7 = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = 7\\{y_{C'}} = 5\end{array} \right. \Rightarrow C'\left( {7;5} \right)\]

Vậy đáp án B đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số\(y = \cos 2x\)trên đoạn\(\left[ { - \frac{\pi }{3};\frac{\pi }{6}} \right].\)Tính giá trị biểu thức\(T = M - 2m.\)

Xem đáp án » 01/02/2023 17,095

Câu 2:

Cho hình chóp S.ABCD, biết AC cắt BD tại M, AB cắt CD tại O. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) .

Xem đáp án » 01/02/2023 14,756

Câu 3:

b)  Một hộp đựng tám thẻ được ghi từ 1 đến 8. Lấy ngẫu nhiên từ hộp đó ba thẻ, tính xác suất để tổng các số ghi trên ba thẻ đó bằng 11.

Xem đáp án » 13/07/2024 10,915

Câu 4:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa SI sao cho\[\frac{{SG}}{{SI}} = \frac{3}{5}\].

a)  Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).

b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).

Xem đáp án » 13/07/2024 10,264

Câu 5:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK = 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số\[\frac{{FA}}{{FD}}.\]

Xem đáp án » 01/02/2023 8,030

Câu 6:

Hàm số nào sau đây đồng biến trên khoảng\[\left( {\frac{\pi }{2};\pi } \right)\]?

Xem đáp án » 01/02/2023 6,902

Câu 7:

Trong các hàm số sau, hàm số nào là hàm số chẵn trên\[\mathbb{R}\]?

Xem đáp án » 01/02/2023 6,286