Câu hỏi:

13/07/2024 33,060

Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB//CD\]\[AB = 2CD\]. Gọi O là giao điểm của ACBD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\].

a) Chứng minh đường thẳng AC song song với mặt phẳng \[\left( {BEF} \right)\].

b) Xác định giao điểm N của đường thẳng SD với mặt phẳng \[\left( {BEF} \right)\] , từ đó chỉ ra thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\].

c) Gọi \[\left( \alpha \right)\] là mặt phẳng qua O và song song với mặt phẳng \[\left( {BEF} \right)\]. Gọi P là giao điểm của SD với \[\left( \alpha \right)\]. Tính tỉ số \[\frac{{SP}}{{SD}}\].

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

a) Một đường thẳng song song với một mặt phẳng khi nó song song với một đường nằm trong mặt phẳng đó.

b) Xác định điểm chung của SD với \[\left( {BEF} \right),\] từ đó xác định thiết diện.

c) Xác định \[\left( \alpha \right).\] Sử dụng định lí Ta-lét.

Cách giải:

a) Áp dụng định lí Ta-lét đảo ta có \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3} \Rightarrow EF{\rm{ // }}AC.\]

\[EF \subset \left( {BEF} \right) \Rightarrow AC{\rm{ // }}\left( {BEF} \right).\]

b) Trong \[\left( {SAC} \right)\] gọi

\[I = SO \cap EF \Rightarrow \left\{ \begin{array}{l}I \in EF \Rightarrow I \in \left( {BEF} \right) \Rightarrow BI \subset \left( {BEF} \right)\\I \in SO \subset \left( {SBD} \right) \Rightarrow I \in \left( {SBD} \right)\end{array} \right..\]

Trong \[\left( {SBD} \right)\] gọi \[N = BI \cap SD\] ta có:

\[\left\{ \begin{array}{l}N \in SD\\N \in BI \subset \left( {BEF} \right)\end{array} \right. \Rightarrow N = SD \cap \left( {BEF} \right).\]

Media VietJack

Ta có \[\left\{ \begin{array}{l}\left( {BEF} \right) \cap \left( {SAB} \right) = BE\\\left( {BEF} \right) \cap \left( {SAD} \right) = EN\\\left( {BEF} \right) \cap \left( {SCD} \right) = NF\\\left( {BEF} \right) \cap \left( {SBC} \right) = FB\end{array} \right. \Rightarrow \] Thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\] là tứ giác BENF.

c) Ta có AC qua O và \[AC{\rm{ // }}EF \Rightarrow AC \subset \left( \alpha \right).\]

Trong \[\left( {SAD} \right)\] qua A kẻ \[AP{\rm{ // }}EN\left( {P \in SD} \right) \Rightarrow AP{\rm{ // }}\left( {BEF} \right) \Leftrightarrow AP \subset \left( \alpha \right).\]

Khi đó ta có \[\left( \alpha \right) \equiv \left( {BEF} \right).\]

Ta có \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SBD} \right) = OP\\\left( {BEF} \right) \cap \left( {SBD} \right) = BN\\\left( \alpha \right){\rm{ // }}\left( {BEF} \right)\end{array} \right. \Rightarrow OP{\rm{ // }}BN.\]

Áp dụng đinh lí Ta-lét ta có: \[\frac{{DP}}{{DN}} = \frac{{DO}}{{DB}}.\]

Ta có: \[\frac{{DO}}{{OB}} = \frac{{DC}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{DO}}{{DB}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{DN}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{PN}} = \frac{1}{2} \Rightarrow DP = \frac{1}{2}NP.\]

Lại áp dụng định lí Ta-lét ta có: \[\frac{{SN}}{{SP}} = \frac{{SE}}{{SA}} = \frac{2}{3}\left( {AP{\rm{ // }}EN} \right) \Rightarrow \frac{{SN}}{{NP}} = 2 \Rightarrow SN = 2NP.\]

Từ đó ta có \[\frac{{SP}}{{SD}} = \frac{{SN + NP}}{{SN + NP + DP}} = \frac{{2NP + NP}}{{2NP + NP + \frac{1}{2}NP}} = \frac{{3NP}}{{\frac{7}{2}NP}} = \frac{6}{7}.\]

Vậy \[\frac{{SP}}{{SD}} = \frac{6}{7}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng \[\left( {{u_n}} \right)\] với \[{u_1} = 2\], \[d = 9\]. Khi đó số 2018 là số hạng thứ mấy trong dãy?

Xem đáp án » 03/02/2023 21,240

Câu 2:

Phương trình \[\sin x = \frac{1}{2}\] có bao nhiêu nghiệm trên đoạn \[\left[ {0;20\pi } \right]\]?

Xem đáp án » 03/02/2023 10,214

Câu 3:

Cho hình hộp \[ABCD.A',B',C',D'\]. Gọi GG’ là trọng tâm các tam giác \[BDA'\]\[A'CC'\].

Khẳng định nào sau đây đúng?

Xem đáp án » 03/02/2023 10,188

Câu 4:

Tìm mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 03/02/2023 6,882

Câu 5:

Cho một số cấp cộng \[\left( {{u_1}} \right)\]\[{u_1} = 1\] và tổng 100 số hạng đầu bằng 10000. Tính tổng: \[S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{99}}{u_{100}}}}\]

Xem đáp án » 13/07/2024 4,934

Câu 6:

Cho cấp số nhân \[\left( {{U_n}} \right),\,n \ge 1\] với công bội \[q = 2\] và có số hạng thứ hai \[{U_2} = 5\]. Số hạng thứ 7 của cấp số là:

Xem đáp án » 03/02/2023 4,621

Bình luận


Bình luận
Vietjack official store