Câu hỏi:
13/07/2024 35,356Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB//CD\] và \[AB = 2CD\]. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\].
a) Chứng minh đường thẳng AC song song với mặt phẳng \[\left( {BEF} \right)\].
b) Xác định giao điểm N của đường thẳng SD với mặt phẳng \[\left( {BEF} \right)\] , từ đó chỉ ra thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\].
c) Gọi \[\left( \alpha \right)\] là mặt phẳng qua O và song song với mặt phẳng \[\left( {BEF} \right)\]. Gọi P là giao điểm của SD với \[\left( \alpha \right)\]. Tính tỉ số \[\frac{{SP}}{{SD}}\].
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
a) Một đường thẳng song song với một mặt phẳng khi nó song song với một đường nằm trong mặt phẳng đó.
b) Xác định điểm chung của SD với \[\left( {BEF} \right),\] từ đó xác định thiết diện.
c) Xác định \[\left( \alpha \right).\] Sử dụng định lí Ta-lét.
Cách giải:
a) Áp dụng định lí Ta-lét đảo ta có \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3} \Rightarrow EF{\rm{ // }}AC.\]
Mà \[EF \subset \left( {BEF} \right) \Rightarrow AC{\rm{ // }}\left( {BEF} \right).\]
b) Trong \[\left( {SAC} \right)\] gọi
\[I = SO \cap EF \Rightarrow \left\{ \begin{array}{l}I \in EF \Rightarrow I \in \left( {BEF} \right) \Rightarrow BI \subset \left( {BEF} \right)\\I \in SO \subset \left( {SBD} \right) \Rightarrow I \in \left( {SBD} \right)\end{array} \right..\]
Trong \[\left( {SBD} \right)\] gọi \[N = BI \cap SD\] ta có:
\[\left\{ \begin{array}{l}N \in SD\\N \in BI \subset \left( {BEF} \right)\end{array} \right. \Rightarrow N = SD \cap \left( {BEF} \right).\]
Ta có \[\left\{ \begin{array}{l}\left( {BEF} \right) \cap \left( {SAB} \right) = BE\\\left( {BEF} \right) \cap \left( {SAD} \right) = EN\\\left( {BEF} \right) \cap \left( {SCD} \right) = NF\\\left( {BEF} \right) \cap \left( {SBC} \right) = FB\end{array} \right. \Rightarrow \] Thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\] là tứ giác BENF.
c) Ta có AC qua O và \[AC{\rm{ // }}EF \Rightarrow AC \subset \left( \alpha \right).\]
Trong \[\left( {SAD} \right)\] qua A kẻ \[AP{\rm{ // }}EN\left( {P \in SD} \right) \Rightarrow AP{\rm{ // }}\left( {BEF} \right) \Leftrightarrow AP \subset \left( \alpha \right).\]
Khi đó ta có \[\left( \alpha \right) \equiv \left( {BEF} \right).\]
Ta có \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SBD} \right) = OP\\\left( {BEF} \right) \cap \left( {SBD} \right) = BN\\\left( \alpha \right){\rm{ // }}\left( {BEF} \right)\end{array} \right. \Rightarrow OP{\rm{ // }}BN.\]
Áp dụng đinh lí Ta-lét ta có: \[\frac{{DP}}{{DN}} = \frac{{DO}}{{DB}}.\]
Ta có: \[\frac{{DO}}{{OB}} = \frac{{DC}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{DO}}{{DB}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{DN}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{PN}} = \frac{1}{2} \Rightarrow DP = \frac{1}{2}NP.\]
Lại áp dụng định lí Ta-lét ta có: \[\frac{{SN}}{{SP}} = \frac{{SE}}{{SA}} = \frac{2}{3}\left( {AP{\rm{ // }}EN} \right) \Rightarrow \frac{{SN}}{{NP}} = 2 \Rightarrow SN = 2NP.\]
Từ đó ta có \[\frac{{SP}}{{SD}} = \frac{{SN + NP}}{{SN + NP + DP}} = \frac{{2NP + NP}}{{2NP + NP + \frac{1}{2}NP}} = \frac{{3NP}}{{\frac{7}{2}NP}} = \frac{6}{7}.\]
Vậy \[\frac{{SP}}{{SD}} = \frac{6}{7}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 104
Đã bán 211
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình hộp \[ABCD.A',B',C',D'\]. Gọi G và G’ là trọng tâm các tam giác \[BDA'\] và \[A'CC'\].
Khẳng định nào sau đây đúng?
Câu 3:
Câu 5:
Câu 6:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận