Câu hỏi:
13/07/2024 18,376Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB//CD\] và \[AB = 2CD\]. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\].
a) Chứng minh đường thẳng AC song song với mặt phẳng \[\left( {BEF} \right)\].
b) Xác định giao điểm N của đường thẳng SD với mặt phẳng \[\left( {BEF} \right)\] , từ đó chỉ ra thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\].
c) Gọi \[\left( \alpha \right)\] là mặt phẳng qua O và song song với mặt phẳng \[\left( {BEF} \right)\]. Gọi P là giao điểm của SD với \[\left( \alpha \right)\]. Tính tỉ số \[\frac{{SP}}{{SD}}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
a) Một đường thẳng song song với một mặt phẳng khi nó song song với một đường nằm trong mặt phẳng đó.
b) Xác định điểm chung của SD với \[\left( {BEF} \right),\] từ đó xác định thiết diện.
c) Xác định \[\left( \alpha \right).\] Sử dụng định lí Ta-lét.
Cách giải:
a) Áp dụng định lí Ta-lét đảo ta có \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3} \Rightarrow EF{\rm{ // }}AC.\]
Mà \[EF \subset \left( {BEF} \right) \Rightarrow AC{\rm{ // }}\left( {BEF} \right).\]
b) Trong \[\left( {SAC} \right)\] gọi
\[I = SO \cap EF \Rightarrow \left\{ \begin{array}{l}I \in EF \Rightarrow I \in \left( {BEF} \right) \Rightarrow BI \subset \left( {BEF} \right)\\I \in SO \subset \left( {SBD} \right) \Rightarrow I \in \left( {SBD} \right)\end{array} \right..\]
Trong \[\left( {SBD} \right)\] gọi \[N = BI \cap SD\] ta có:
\[\left\{ \begin{array}{l}N \in SD\\N \in BI \subset \left( {BEF} \right)\end{array} \right. \Rightarrow N = SD \cap \left( {BEF} \right).\]
Ta có \[\left\{ \begin{array}{l}\left( {BEF} \right) \cap \left( {SAB} \right) = BE\\\left( {BEF} \right) \cap \left( {SAD} \right) = EN\\\left( {BEF} \right) \cap \left( {SCD} \right) = NF\\\left( {BEF} \right) \cap \left( {SBC} \right) = FB\end{array} \right. \Rightarrow \] Thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\] là tứ giác BENF.
c) Ta có AC qua O và \[AC{\rm{ // }}EF \Rightarrow AC \subset \left( \alpha \right).\]
Trong \[\left( {SAD} \right)\] qua A kẻ \[AP{\rm{ // }}EN\left( {P \in SD} \right) \Rightarrow AP{\rm{ // }}\left( {BEF} \right) \Leftrightarrow AP \subset \left( \alpha \right).\]
Khi đó ta có \[\left( \alpha \right) \equiv \left( {BEF} \right).\]
Ta có \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SBD} \right) = OP\\\left( {BEF} \right) \cap \left( {SBD} \right) = BN\\\left( \alpha \right){\rm{ // }}\left( {BEF} \right)\end{array} \right. \Rightarrow OP{\rm{ // }}BN.\]
Áp dụng đinh lí Ta-lét ta có: \[\frac{{DP}}{{DN}} = \frac{{DO}}{{DB}}.\]
Ta có: \[\frac{{DO}}{{OB}} = \frac{{DC}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{DO}}{{DB}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{DN}} = \frac{1}{3} \Rightarrow \frac{{DP}}{{PN}} = \frac{1}{2} \Rightarrow DP = \frac{1}{2}NP.\]
Lại áp dụng định lí Ta-lét ta có: \[\frac{{SN}}{{SP}} = \frac{{SE}}{{SA}} = \frac{2}{3}\left( {AP{\rm{ // }}EN} \right) \Rightarrow \frac{{SN}}{{NP}} = 2 \Rightarrow SN = 2NP.\]
Từ đó ta có \[\frac{{SP}}{{SD}} = \frac{{SN + NP}}{{SN + NP + DP}} = \frac{{2NP + NP}}{{2NP + NP + \frac{1}{2}NP}} = \frac{{3NP}}{{\frac{7}{2}NP}} = \frac{6}{7}.\]
Vậy \[\frac{{SP}}{{SD}} = \frac{6}{7}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!