Cho hàm số xác định và liên tục trên (có thể a là là và điểm Nếu tồn tại số h>0 sao cho với mọi và thì ta nói:
B. Hàm số đạt cực tiểu tại
Quảng cáo
Trả lời:
Lý thuyết sách giáo khoa.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định:
Ta có: là đường tiệm cận ngang.
Mặc khác:
không là đường tiệm cận đứng.
là đường tiệm cận đứng.
Vậy đồ thị hàm số có 2 đường tiệm cận.
Lời giải
Ta có .
Từ đó ta suy ra hàm số đồng biến trên khoảng khi hàm số
nghịch biến trên khoảng .
nghịch biến trên khoảng .
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. được gọi giá trị cực tiểu của hàm số.
C. Điểm được gọi là cực tiểu của đồ thị hàm số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. Hàm số có 2 điểm cực đại và 1 điểm cực tiểu.
C. Hàm số có 1 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
B. Hàm số đồng biến trên khoảng .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.