Câu hỏi:

07/02/2023 8,334 Lưu

Cho hàm số y=fx liên tục trên R và có đạo hàm f'x=x+12x132x. Hàm số y=fx đồng biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có f'x=x+12x132xf'x=0x=1x=1x=2.

Từ đó, ta có bảng biến thiên như sau:

Cho hàm số  y=f(x) liên tục trên R  và có đạo hàm  f' (x)=(x+1)^2( x-1)^3(2-x). Hàm số  y=f(x) đồng biến trên khoảng nào dưới đây? (ảnh 1)

Dựa vào bảng biến thiên thì hàm số y=fx đồng biến trên (1,2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Đồ thị hàm số y=ax+bcx+1 có đường tiệm cận đứng là đường thẳng  x=1c và đường tiệm cận ngang là đường thẳng y=ac .

Nhìn vào bảng biến thiên, ta thấy 1c=1c=1ac=2a=2

(vì c=1).

Ta có y'=abccx+12.

Vì hàm số đã cho đồng biến trên các khoảng ;1 1;+ nên

y'=abcbx+c2>0abc>02b>0b<2b3<8b38<0.

Vậy tập các giá trị b là tập nghiệm của bất phương trình b38<0.

Lời giải

Chọn C
Đồ thị hàm số y=f(x+2018) có được bằng cách tịnh tiến đồ thị hàm số y=f(x) sang trái 2018 đơn vị. Do đó số nghiệm của phương trình f(x+2018)=1 cũng là số nghiệm của phương trình f(x)=1. Theo hình vẽ ta có số nghiệm là 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP