Câu hỏi:

08/02/2023 4,797 Lưu

Cho hàm số \(y = f\left( x \right)\)có đạo hàm trên \(\mathbb{R}\)và có đồ thị như hình vẽ sau:

Media VietJack

Số cực trị của hàm số \(y = {\left[ {f\left( x \right)} \right]^2}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A
Ta có: \(y' = 2f\left( x \right)f'\left( x \right)\).
\(y' = 0 \Leftrightarrow 2f\left( x \right)f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f'\left( x \right) = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = a\,\,\left( {a \in \left( { - 2;\, - 1} \right)} \right)\\x = 0\\x = b\,\,\left( {b \in \left( {1;\,2} \right)} \right)\\x = - 1\\x = 1\end{array} \right.\)
Bảng biến thiên

 Media VietJack

Dựa vào bảng biến thiên ta thấy đạo hàm đổi dấu 5 lần. Do đó, hàm số đã cho có 5 cực trị

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn A
Xét hàm số \(y = g\left( x \right) = f\left( {3 - 2x} \right)\).
Ta có \(g'\left( x \right) = - 2f'\left( {3 - 2x} \right)\). Suy ra \[g'\left( x \right) = - 2f'\left( {3 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3 - 2x = - 3\\3 - 2x = - 1\\3 - 2x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 2\\x = 1\end{array} \right.\].
Ta có bảng xét dấu \(g'\left( x \right)\) như sau:

Media VietJack 

Từ bảng xét dấu của \(g'\left( x \right)\) suy ra hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên khoảng \(\left( {3\,;\, + \infty } \right)\).

Câu 2

Lời giải

Lời giải
Chọn B
Xét hàm số \(y = {x^3} + 2x\)
Ta có: \[y' = 3{x^2} + 2 > 0\,\forall x\] nên hàm số đồng biến trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP