Câu hỏi:

08/02/2023 1,703

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn C
Tập xác định: \(D = \left[ { - 4; + \infty } \right)\backslash \left\{ { - 1;0} \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = 0\) nên đồ thị hàm số có 1 tiệm cận ngang là \(y = 0\).
Lại có \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = + \infty \), \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = - \infty \) nên đồ thị hàm số có 1 tiệm cận đứng là \(x = - 1\).
Và \(\mathop {\lim }\limits_{x \to 0} y = \frac{1}{4}\) nên đường thẳng \(x = 0\) không là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Chọn A
Xét hàm số \(y = g\left( x \right) = f\left( {3 - 2x} \right)\).
Ta có \(g'\left( x \right) = - 2f'\left( {3 - 2x} \right)\). Suy ra \[g'\left( x \right) = - 2f'\left( {3 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3 - 2x = - 3\\3 - 2x = - 1\\3 - 2x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 2\\x = 1\end{array} \right.\].
Ta có bảng xét dấu \(g'\left( x \right)\) như sau:

Media VietJack 

Từ bảng xét dấu của \(g'\left( x \right)\) suy ra hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên khoảng \(\left( {3\,;\, + \infty } \right)\).

Câu 2

Lời giải

Lời giải
Chọn B
Xét hàm số \(y = {x^3} + 2x\)
Ta có: \[y' = 3{x^2} + 2 > 0\,\forall x\] nên hàm số đồng biến trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP