Câu hỏi:

08/02/2023 39

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}}\) là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn C
Tập xác định: \(D = \left[ { - 4; + \infty } \right)\backslash \left\{ { - 1;0} \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = 0\) nên đồ thị hàm số có 1 tiệm cận ngang là \(y = 0\).
Lại có \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = + \infty \), \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = - \infty \) nên đồ thị hàm số có 1 tiệm cận đứng là \(x = - 1\).
Và \(\mathop {\lim }\limits_{x \to 0} y = \frac{1}{4}\) nên đường thẳng \(x = 0\) không là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số cực trị của hàm số \(f(x) = {x^4} - 4{x^2} + 3\)

Xem đáp án » 08/02/2023 90

Câu 2:

Số giao điểm của đồ thị hàm số \[y = {x^3} - 5x\] và đường thẳng \[y = x\] là

Xem đáp án » 08/02/2023 36

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Media VietJack

Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) bằng

Xem đáp án » 07/02/2023 35

Câu 4:

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\). Biết \(\Delta SAB\) là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(AB = a\), \(AC = a\sqrt 3 \). Thể tích khối chóp \(S.ABC\) là:

Xem đáp án » 08/02/2023 32

Câu 5:

Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với \(\left( {ABCD} \right)\), đáy \(ABCD\) là hình vuông cạnh \(a\) và \(SA = 6a\). Thể tích khối chóp \(S.ABCD\) bằng

Xem đáp án » 07/02/2023 29

Câu 6:

Hình chóp \(S.ABCD\) đáy hình vuông, \(SA\) vuông góc với đáy, \(SA = a\sqrt 3 ,AC = a\sqrt 2 \). Khi đó thể tích khối chóp \(S.ABCD\)

Xem đáp án » 08/02/2023 29

Bình luận


Bình luận

TÀI LIỆU VIP VIETJACK