Câu hỏi:

08/02/2023 50

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(B\). Biết \(\Delta SAB\) là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(AB = a\), \(AC = a\sqrt 3 \). Thể tích khối chóp \(S.ABC\) là:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn D

Media VietJack

Gọi \(E\) là trung điểm cạnh \(AB\). Ta có:
\(\left. \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\Trong{\rm{ }}\left( {SAB} \right):SE \bot AB\end{array} \right\} \Rightarrow SE \bot \left( {ABC} \right)\) tại \(E\).
\(\Delta SAB\) là tam giá đều có cạnh \(AB = a\) \( \Rightarrow SE = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).
\(\Delta ABC\) vuông tại \(B\) \( \Rightarrow BC = \sqrt {A{C^2} - A{B^2}} = a\sqrt 2 \) \( \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}\sqrt 2 }}{2}\).
Vậy \({V_{S,ABC}} = \frac{1}{3}SE.{S_{\Delta ABC}} = \frac{1}{3}\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 2 }}{2} = \frac{{{a^3}\sqrt 6 }}{{12}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số giao điểm của đồ thị hàm số \[y = {x^3} - 5x\] và đường thẳng \[y = x\] là

Xem đáp án » 08/02/2023 207

Câu 2:

Số cực trị của hàm số \(f(x) = {x^4} - 4{x^2} + 3\)

Xem đáp án » 08/02/2023 98

Câu 3:

Hình chóp \(S.ABCD\) đáy hình vuông, \(SA\) vuông góc với đáy, \(SA = a\sqrt 3 ,AC = a\sqrt 2 \). Khi đó thể tích khối chóp \(S.ABCD\)

Xem đáp án » 08/02/2023 67

Câu 4:

Thể tích của khối lập phương có cạnh bằng \(4\) là:

Xem đáp án » 07/02/2023 60

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Media VietJack

Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) bằng

Xem đáp án » 07/02/2023 57

Câu 6:

Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với \(\left( {ABCD} \right)\), đáy \(ABCD\) là hình vuông cạnh \(a\) và \(SA = 6a\). Thể tích khối chóp \(S.ABCD\) bằng

Xem đáp án » 07/02/2023 54

Câu 7:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}}\) là

Xem đáp án » 08/02/2023 51

Bình luận


Bình luận

TÀI LIỆU VIP VIETJACK