Câu hỏi:

08/02/2023 687 Lưu

Cho hàm số \(f(x)\), có bảng biến thiên của hàm số \(f'(x)\) như sau:

Media VietJack

Số cực trị của hàm số \(y = f({x^2} + 2x)\) là

A. \(5\).
B. \(4\).
C. \(3\).
D. \(7\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải
Chọn D
Ta có \(y' = \left( {2x + 2} \right)f'({x^2} + 2x)\)
Khi đó, \(y' = 0 \Leftrightarrow \left( {2x + 2} \right)f'({x^2} + 2x) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\f'({x^2} + 2x) = 0\end{array} \right.\)

Media VietJack

Dựa vào bảng biến thiên của hàm số \(f'(x)\), ta có: \(f'({x^2} + 2x) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2x = a\,(a < - 1)\,\,\,\,\,\,\,\,\,(1)\\{x^2} + 2x = b\,( - 1 < b < 0)\,(2)\\{x^2} + 2x = c\,\,(0 < c < 1)\,\,\,\,\,(3)\\{x^2} + 2x = d\,\,(d > 1)\,\,\,\,\,\,\,\,\,\,\,\,(4)\end{array} \right.\)
Lập BBT của hàm số \(g(x) = {x^2} + 2x\), từ đó ta suy ra được:
+) Phương trình (1) vô nghiệm
+) Phương trình (2) có 2 nghiệm âm phân biệt \({x_1}\), \({x_2}\) và \({x_1} < - 1 < {x_2}\)
+) Phương trình (3) có 2 nghiệm trái dấu \({x_3}\), \({x_4}\) và \({x_3} < {x_1} < - 1 < {x_2} < {x_4}\).
+) Phương trình (4) có 2 nghiệm trái dấu \({x_5}\), \({x_6}\) và \({x_5} < {x_3} < {x_1} < - 1 < {x_2} < {x_4} < {x_6}\).
Ta có bảng xét dấu \(y'\) như sau:

Media VietJack

Suy ra hàm số \(y = f({x^2} + 2x)\) có 7 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {3\,;\, + \infty } \right)\).
B. \(\left( {2\,;\,4} \right)\).
C. \(\left( {1\,;\, + \infty } \right)\).
D. \(\left( { - \infty \,;\,1} \right)\).

Lời giải

Lời giải
Chọn A
Xét hàm số \(y = g\left( x \right) = f\left( {3 - 2x} \right)\).
Ta có \(g'\left( x \right) = - 2f'\left( {3 - 2x} \right)\). Suy ra \[g'\left( x \right) = - 2f'\left( {3 - 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3 - 2x = - 3\\3 - 2x = - 1\\3 - 2x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 2\\x = 1\end{array} \right.\].
Ta có bảng xét dấu \(g'\left( x \right)\) như sau:

Media VietJack 

Từ bảng xét dấu của \(g'\left( x \right)\) suy ra hàm số \(y = f\left( {3 - 2x} \right)\) đồng biến trên khoảng \(\left( {3\,;\, + \infty } \right)\).

Câu 2

A. \(y = \frac{{2x - 1}}{{x + 3}}\).
B. \(y = {x^3} + 2x\).
C. \(y = 2{x^2} + 1\).
D. \(y = 2{x^4} + {x^2}\).

Lời giải

Lời giải
Chọn B
Xét hàm số \(y = {x^3} + 2x\)
Ta có: \[y' = 3{x^2} + 2 > 0\,\forall x\] nên hàm số đồng biến trên \(\mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( { - 2\,;\,4} \right)\].
B. \[\left( { - \infty \,;\, - 2} \right) \cup \left( {4\,;\, + \infty } \right)\].
C. \[\left[ { - 2\,;\,4} \right]\].
D. \[\left( { - \infty \,;\, - 2} \right] \cup \left[ {4\,;\, + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{{a^3}\sqrt 3 }}{2}\).
B. \(\frac{{{a^3}\sqrt 2 }}{2}\).
C. \(\frac{{{a^3}\sqrt 3 }}{3}\).
D. \(\frac{{{a^3}\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP