Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
Cho hàm số \(y = \frac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?
A. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
B. Hàm số nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)
D. Hàm số đồng biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:
- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)
- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định
- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên
- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Cách giải:
Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)
\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)
\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. 1
Lời giải
Đáp án A
Phương pháp:
- Tìm TXĐ
- Tìm nghiệm và điểm không xác định của y’
- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e
- Tính tích M.m.
Cách giải:
TXĐ: \(D = \left( {0; + \infty } \right)\)
\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)
\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)
Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)
Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)
Câu 2
D. \(\left[ {{{50}^0};{{70}^0}} \right)\)
Lời giải
Đáp án D
Phương pháp:
Tính thể tích của khối lăng trụ đứng, có đáy là hình thang cân mà hai cạnh bên bằng đáy bé và bằng 20cm.
Thể tích lớn nhất khi diện tích của hình thang cân lớn nhất.
Cách giải:
Thể tích nước lớn nhất khi diện tích của hình thang cân lớn nhất
Gọi độ dài đường cao là h. Khi đó, \(AE = BF = h\), từ đó, suy ra \(DE = CF = \sqrt {{{20}^2} - {h^2}} = \sqrt {400 - {h^2}} \)
\(CD = DE + EF + FC = 2\sqrt {400 - {h^2}} + 20\)
Diện tích hình thang: \(S = \left( {AB + CD} \right).AE:2 = \frac{{20 + 2\sqrt {400 - {h^2}} + 20}}{2}.h = 20h + h\sqrt {400 - {h^2}} \)
\(S' = 20 + \sqrt {400 - {h^2}} - h.\frac{h}{{\sqrt {400 - {h^2}} }} = 20 + \frac{{400 - 2{h^2}}}{{\sqrt {400 - {h^2}} }}\)
\(S' = 0 \Leftrightarrow 20\sqrt {400 - {h^2}} + 400 - {2^2} = 0 \Leftrightarrow {h^2} = 300 \Rightarrow h = 10\sqrt 3 \)
Bảng xét dấu:
Diện tích hình thang lớn nhất khi \(h = 10\sqrt 3 \)
Khi đó, \(\sin \varphi = \frac{{10\sqrt 3 }}{0} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = {60^0} \Rightarrow \varphi \in \left[ {{{50}^0};{{70}^0}} \right)\)
Câu 3
A. \(c > b > a\)
B. \(c > a > b\)
C. \(a > b > c\)
D. \(b > a > c\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. \(y' = e.\ln x + x\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(\left( {0;1} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(m \in \mathbb{R}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

