Câu hỏi:

10/02/2023 7,125 Lưu

Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m M. Tích M.m bằng

A. –1
B. 2e
C. \(\frac{{ - 2}}{e}\)

D. 1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và điểm không xác định của y’

- Tính các giá trị tại \(\frac{1}{{{e^2}}}\), tại , tại nghiệm của y’ . Tìm GTLN, GTNN trong các giá trị đó. e

- Tính tích M.m.

Cách giải:

TXĐ: \(D = \left( {0; + \infty } \right)\)

\(y = x.\ln x \Rightarrow y' = \ln x + x.\frac{1}{x} = \ln x + 1\)

\(y' = 0 \Leftrightarrow x = \frac{1}{e}\)

Ta có: \(f\left( {\frac{1}{{{e^2}}}} \right) = - \frac{2}{{{e^2}}},\,\,\,f\left( e \right) = e,\,\,\,f\left( {\frac{1}{e}} \right) = - \frac{1}{e}\)

Vậy \(\mathop {\min }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = - \frac{1}{e} = m,\,\,\,\mathop {\max }\limits_{\left[ {\frac{1}{{{e^2}}};e} \right]} f\left( x \right) = e = M \Rightarrow M.m = - 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)    

B. Hàm số nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)

C. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số đồng biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\)

Lời giải

Đáp án C

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính \(f'\left( x \right)\)

- Bước 2: Tìm các điểm tại đó \(f'\left( x \right) = 0\)hoặc \(f'\left( x \right)\)không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

Tập xác định: \(D = R\backslash \left\{ 2 \right\}\)

\(y = \frac{{2x - 1}}{{x - 2}} \Rightarrow y' = \frac{{2.\left( { - 2} \right) - 1\left( { - 1} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}} < 0,\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2; + \infty } \right)\)

Lời giải

Đáp án D

Phương pháp:

Tính thể tích của khối lăng trụ đứng, có đáy là hình thang cân mà hai cạnh bên bằng đáy bé và bằng 20cm.

Thể tích lớn nhất khi diện tích của hình thang cân lớn nhất.

Cách giải:

Thể tích nước lớn nhất khi diện tích của hình thang cân lớn nhất

Bạn Nam làm một cái máng thoát nước mưa, mặt cắt là hình thang cân có độ dài hai cạnh bên  (ảnh 2)

Gọi độ dài đường cao là h. Khi đó, \(AE = BF = h\), từ đó, suy ra \(DE = CF = \sqrt {{{20}^2} - {h^2}} = \sqrt {400 - {h^2}} \)

\(CD = DE + EF + FC = 2\sqrt {400 - {h^2}} + 20\)

Diện tích hình thang: \(S = \left( {AB + CD} \right).AE:2 = \frac{{20 + 2\sqrt {400 - {h^2}} + 20}}{2}.h = 20h + h\sqrt {400 - {h^2}} \)

\(S' = 20 + \sqrt {400 - {h^2}} - h.\frac{h}{{\sqrt {400 - {h^2}} }} = 20 + \frac{{400 - 2{h^2}}}{{\sqrt {400 - {h^2}} }}\)

\(S' = 0 \Leftrightarrow 20\sqrt {400 - {h^2}} + 400 - {2^2} = 0 \Leftrightarrow {h^2} = 300 \Rightarrow h = 10\sqrt 3 \)

Bảng xét dấu:

Bạn Nam làm một cái máng thoát nước mưa, mặt cắt là hình thang cân có độ dài hai cạnh bên  (ảnh 3)

Diện tích hình thang lớn nhất khi \(h = 10\sqrt 3 \)

Khi đó, \(\sin \varphi = \frac{{10\sqrt 3 }}{0} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = {60^0} \Rightarrow \varphi \in \left[ {{{50}^0};{{70}^0}} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = {x^e}.\ln x + {e^x}\)
B. \(y' = e.\left( {{e^{x - 1}} + {x^{e - 1}}} \right)\)
C. \(y' = x.\left( {{x^{e - 1}} + {e^{x - 1}}} \right)\)

D. \(y' = e.\ln x + x\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - \infty ;0} \right)\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( { - \infty ;\frac{1}{2}} \right)\)

D. \(\left( {0;1} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m \in \left\{ { - 2;2} \right\}\)
B. \(m < - 2\) hoặc \(m > 2\)
C. \( - 2 < m < 2\)

D. \(m \in \mathbb{R}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP