Câu hỏi:

10/02/2023 370 Lưu

Thể tích khối tứ diện đều cạnh \(3\sqrt 2 \) bằng

A. \(9\).
B. \(3\sqrt 2 \).
C. \(6\).
D. \(3\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải

Media VietJack 

Cách 1: Ta tính thể tích khối tứ diện đều \[ABCD\] có cạnh bằng \(3\sqrt 2 \).
Ta có \({S_{\Delta BCD}} = \frac{1}{2}.3\sqrt 2 .3\sqrt 2 .\sin 60^\circ = \frac{{9\sqrt 3 }}{2}\,\,.\) Gọi \[H\] là trọng tâm \(\Delta BCD \Rightarrow AH \bot \left( {BCD} \right)\,\,.\)
Gọi \[I\] là trung điểm \[CD\]\[ \Rightarrow \,BI = \frac{{3\sqrt 6 }}{2} \Rightarrow \,BH = \frac{2}{3}BI = \sqrt 6 \,\,\,.\]
\[ \Rightarrow AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{{\left( {3\sqrt 2 } \right)}^2} - {{\sqrt 6 }^2}} = 2\sqrt 3 \,\,\,.\]
Thể tích khối tứ diện đều cạnh \(3\sqrt 2 \) bằng: \({V_{ABCD}} = \frac{1}{3}.AH.{S_{\Delta BCD}} = \frac{1}{3}.2\sqrt 3 .\frac{{9\sqrt 3 }}{2} = 9\,\,.\)
Cách 2: Thể tích khối tứ diện đều có cạnh bằng \(a\)\(\frac{{{a^3}\sqrt 2 }}{{12}}\)
Suy ra thể tích khối tứ diện đều có cạnh bằng \(3\sqrt 2 \)\(\frac{{{{\left( {3\sqrt 2 } \right)}^3}\sqrt 2 }}{{12}} = 9\,\,.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tập xác định: \(D = \left[ { - 3;3} \right]\).
Hàm số liên tục trên \(\left[ { - 3;3} \right]\).
\(y' = \frac{{ - x}}{{\sqrt {9 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 0 \in \left[ { - 3;3} \right]\).
\(y\left( 0 \right) = 3;y\left( { - 3} \right) = 0;y\left( 3 \right) = 0\).
Vậy \[\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = 3 = y\left( 0 \right)\].

Câu 2

A. \[y = {x^4} - 2{x^2} - 1\].
B. \[y = {x^3} - 3x - 1\].
C. \[y = - {x^4} + 2{x^2} - 1\].
D. \[y = - {x^4} + 2x - 1\].

Lời giải

Lời giải
Đồ thị hàm số có \[2\] cực đại là \[\left( { - 1;\,0} \right)\] và \[\left( {1;\,0} \right)\]; \[1\] cực tiểu là \[\left( {0;\, - 1} \right)\]
\[ \Rightarrow \] đáp án C thoả mãn.

Câu 3

A. \(y = {x^4} - 2{x^2}\).
B. \(y = {x^3} - 3{x^2} + 1\).
C. \(y = 3x - {x^3}\).
D. \(y = {x^3} - 3x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đồ thị hàm số có tiệm cận ngang \(y = 1\).
B. Hàm số luôn tăng trên từng khoảng xác định.
C. Đồ thị hàm số có tâm đối xứng.
D. Đồ thị hàm số có tiệm cận đứng \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = \frac{{2x - 1}}{{x + 1}}\).
B. \(y = \frac{{x + 1}}{{x - 1}}\).
C. \(y = \frac{{{x^2} - x - 1}}{{x + 1}}\).
D. \(y = \frac{{x - 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP