Câu hỏi:

10/02/2023 1,822 Lưu

Cho tứ diện \(SABC\), biết \(\overrightarrow {SA} = 2\overrightarrow {SM} ;2\overrightarrow {SB} = 3\overrightarrow {SN} \). Tính thể tích khối tứ diện \(SMNC\) biết thể tích khối tứ diện \(SABC\) bằng \(9.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A.
Ta có \(\overrightarrow {SA} = 2\overrightarrow {SM} \) nên \(M\) là trung điểm của \(SA\)\(2.\overrightarrow {SB} = 3\overrightarrow {SN} \) nên chia \(SB\) thành 3 phân sao cho \(\frac{{SN}}{{SB}} = \frac{2}{3}\).
Khi đó, theo công thức tỉ lệ thể tích ta có:
\[\frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SC}}{{SC}} = \frac{1}{2}.\frac{2}{3}.1 = \frac{1}{3} \Rightarrow {V_{S.MNC}} = \frac{1}{3}{V_{S.ABC}} = \frac{1}{3}.9 = 3\,\,\,(DVTT)\]
Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Đồ thị hàm số có \[2\] cực đại là \[\left( { - 1;\,0} \right)\] và \[\left( {1;\,0} \right)\]; \[1\] cực tiểu là \[\left( {0;\, - 1} \right)\]
\[ \Rightarrow \] đáp án C thoả mãn.

Lời giải

Lời giải

Tập xác định: \(D = \left[ { - 3;3} \right]\).
Hàm số liên tục trên \(\left[ { - 3;3} \right]\).
\(y' = \frac{{ - x}}{{\sqrt {9 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 0 \in \left[ { - 3;3} \right]\).
\(y\left( 0 \right) = 3;y\left( { - 3} \right) = 0;y\left( 3 \right) = 0\).
Vậy \[\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = 3 = y\left( 0 \right)\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP