Câu hỏi:

10/02/2023 322 Lưu

Thể tích khối đa diện đều loại \[{\rm{\{ }}3\,;\,\,4\} \] có độ dài cạnh bằng \[\sqrt 3 \] là

A. \[\sqrt 6 \].
B. \[\frac{{\sqrt 6 }}{2}\].
C. \[\sqrt 3 \].
D. \[\frac{{\sqrt 3 }}{3}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải

Media VietJack 

Khối đa diện đều loại \[{\rm{\{ }}3\,;\,\,4\} \] là khối bát diện đều.
Thể tích khối bát diện đều \[{V_{ABCDEF}} = 2.{V_{E.ABCD}}\] với khối chóp \[E.ABCD\] là khối chóp tứ giác đều cạnh bằng \[\sqrt 3 \].
Cách 1. Tính nhanh:
\[{V_{E.ABCD}} = \frac{{{{(\sqrt 3 )}^3}.\sqrt 2 }}{6} = \frac{{\sqrt 6 }}{2}\].
Khi đó \[{V_{ABCDEF}} = 2.{V_{E.ABCD}} = 2.\frac{{\sqrt 6 }}{2} = \sqrt 6 \].
Cách 2. Tự luận
Đáy \[ABCD\] là hình vuông cạnh bằng \[\sqrt 3 \] Þ \[{S_{ABCD}} = {(\sqrt 3 )^2} = 3\].
Đường chéo \[AC = \,\sqrt 3 .\sqrt 2 = \sqrt 6 \] Þ \[OA = \frac{1}{2}AC = \frac{{\sqrt 6 }}{2}\].
Xét \[\Delta EOA\] vuông tại \[O\] có \[EO = \sqrt {E{A^2} - O{A^2}} = \sqrt {{{(\sqrt 3 )}^2} - {{\left( {\frac{{\sqrt 6 }}{2}} \right)}^2}} = \frac{{\sqrt 6 }}{2}\].
\[{V_{E.ABCD}} = \frac{1}{3}.EO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt 6 }}{2}.3 = \frac{{\sqrt 6 }}{2}\].

Khi đó \[{V_{ABCDEF}} = 2.{V_{E.ABCD}} = 2.\frac{{\sqrt 6 }}{2} = \sqrt 6 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tập xác định: \(D = \left[ { - 3;3} \right]\).
Hàm số liên tục trên \(\left[ { - 3;3} \right]\).
\(y' = \frac{{ - x}}{{\sqrt {9 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 0 \in \left[ { - 3;3} \right]\).
\(y\left( 0 \right) = 3;y\left( { - 3} \right) = 0;y\left( 3 \right) = 0\).
Vậy \[\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = 3 = y\left( 0 \right)\].

Câu 2

A. \[y = {x^4} - 2{x^2} - 1\].
B. \[y = {x^3} - 3x - 1\].
C. \[y = - {x^4} + 2{x^2} - 1\].
D. \[y = - {x^4} + 2x - 1\].

Lời giải

Lời giải
Đồ thị hàm số có \[2\] cực đại là \[\left( { - 1;\,0} \right)\] và \[\left( {1;\,0} \right)\]; \[1\] cực tiểu là \[\left( {0;\, - 1} \right)\]
\[ \Rightarrow \] đáp án C thoả mãn.

Câu 3

A. \(y = {x^4} - 2{x^2}\).
B. \(y = {x^3} - 3{x^2} + 1\).
C. \(y = 3x - {x^3}\).
D. \(y = {x^3} - 3x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đồ thị hàm số có tiệm cận ngang \(y = 1\).
B. Hàm số luôn tăng trên từng khoảng xác định.
C. Đồ thị hàm số có tâm đối xứng.
D. Đồ thị hàm số có tiệm cận đứng \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = \frac{{2x - 1}}{{x + 1}}\).
B. \(y = \frac{{x + 1}}{{x - 1}}\).
C. \(y = \frac{{{x^2} - x - 1}}{{x + 1}}\).
D. \(y = \frac{{x - 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP