Câu hỏi:

10/02/2023 2,860

Người ta muốn sơn một bức tường được tạo thành từ 20 bức tường nhỏ có số đo và hình dạng như hình vẽ bên dưới. Biết mỗi lít sơn được 5m2 tường và phần tường phía trên là phần trong của Parabol. Lượng sơn cần dùng gần với giá trị nào dưới đây
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Bức trường con gồm hai phần, một phần là hình chữ nhật có diện tích là S1=1,6.1,2=1,92 m2
Phần phía trên là phần trong của một Parabol, nên ta sẽ gắn hệ trục tọa độ như sau:
Media VietJack
Từ đó ta có phương trình đường cong là: y=536x2+53x.
Áp dụng công thức tính diện tích hình phẳng ta có: S2=01,2536x2+53xdx=5108x3+56x201,2=1,12m2
Suy ra diện tích 1 bức tường con là: S=S1+S2=3,04m2.
Suy ra diện tích cả bức tường to là: Stp=20.3,04=60,8m2
Suy ra thể tích sơn cần dùng là: V=Stp5=12,16l.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Tập xác định: D=4;+\1;0.
Tại x = 0, ta có: limx0+x+42x2+x=limx0+xxx+1x+4+2=limx0+1x+1x+4+2=14
limx0x+42x2+x=limx0xxx+1x+4+2=limx01x+1x+4+2=14.
Suy ra x = 0 không phải là đường tiệm cận đứng của đồ thị hàm số.
Tại x=1, ta có: limx1+x+42x2+x=+(hoặc limx1x+42x2+x=).
Suy ra đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số.

Lời giải

Chọn D

Ta có log2x23=log22xx23=2xx>0x=3.

Câu 3

Họ nguyên hàm của hàm số fx=e2x+3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian Oxyz, cho hai điểm A1; 2; 3, B1; 4; 1. Phương trình mặt cầu có đường kính là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian Oxyz, cho mặt cầu S:x2+y2+z22x+6y4=0. Xác định tọa độ tâm I và tính bán kính R của mặt cầu (S).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay