Câu hỏi:

11/02/2023 285 Lưu

Cho hàm số \[y = f\left( x \right)\]có \[\mathop {min}\limits_{\left[ { - 1;\,1} \right]} f\left( x \right) = 5\] tại \[x = 1\]. Bất phương trình \[f\left( x \right) + \sqrt {1 - x} + \sqrt {5 - x} \le m\] có nghiệm \[x \in \left[ { - 1;\,1} \right]\]khi \[m\] thoả mãn:

A. \[m \le 7\].
B. \[m < 7\].
C. \[m > 7\].
D. \[m \ge 7\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Lời giải
Theo đề bài ta có: \[\mathop {min}\limits_{\left[ { - 1;\,1} \right]} f\left( x \right) = f\left( 1 \right) = 5.\]
Đặt \[g\left( x \right) = \sqrt {1 - x} + \sqrt {5 - x} \] với \[x \in \left[ { - 1;\,1} \right]\]; \[g'\left( x \right) = \frac{{ - 1}}{{2\sqrt {1 - x} }} + \frac{{ - 1}}{{2\sqrt {5 - x} }} < 0\,\forall x \in \left( { - \infty ;\,\,1} \right]\].
Hàm số \[y = g\left( x \right)\] luôn nghịch biến trên \[\left[ { - 1;\,1} \right]\]. Vậy\[\mathop {min}\limits_{\left[ { - 1;\,1} \right]} g\left( x \right) = g\left( 1 \right) = 2\].
Để phương trình \[f\left( x \right) + \sqrt {1 - x} + \sqrt {5 - x} \le m\] có nghiệm trên \[x \in \left[ { - 1;\,1} \right]\] khi và chỉ khi
\[m \ge \mathop {min}\limits_{\left[ { - 1;\,1} \right]} \left( {f\left( x \right) + \sqrt {1 - x} + \sqrt {5 - x} } \right) = 5 + 2 = 7.\] Vậy \[m \ge 7\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tập xác định: \(D = \left[ { - 3;3} \right]\).
Hàm số liên tục trên \(\left[ { - 3;3} \right]\).
\(y' = \frac{{ - x}}{{\sqrt {9 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 0 \in \left[ { - 3;3} \right]\).
\(y\left( 0 \right) = 3;y\left( { - 3} \right) = 0;y\left( 3 \right) = 0\).
Vậy \[\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = 3 = y\left( 0 \right)\].

Câu 2

A. \[y = {x^4} - 2{x^2} - 1\].
B. \[y = {x^3} - 3x - 1\].
C. \[y = - {x^4} + 2{x^2} - 1\].
D. \[y = - {x^4} + 2x - 1\].

Lời giải

Lời giải
Đồ thị hàm số có \[2\] cực đại là \[\left( { - 1;\,0} \right)\] và \[\left( {1;\,0} \right)\]; \[1\] cực tiểu là \[\left( {0;\, - 1} \right)\]
\[ \Rightarrow \] đáp án C thoả mãn.

Câu 3

A. \(y = {x^4} - 2{x^2}\).
B. \(y = {x^3} - 3{x^2} + 1\).
C. \(y = 3x - {x^3}\).
D. \(y = {x^3} - 3x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = \frac{{2x - 1}}{{x + 1}}\).
B. \(y = \frac{{x + 1}}{{x - 1}}\).
C. \(y = \frac{{{x^2} - x - 1}}{{x + 1}}\).
D. \(y = \frac{{x - 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Đồ thị hàm số có tiệm cận ngang \(y = 1\).
B. Hàm số luôn tăng trên từng khoảng xác định.
C. Đồ thị hàm số có tâm đối xứng.
D. Đồ thị hàm số có tiệm cận đứng \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP