Câu hỏi:

11/02/2023 1,084 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có tâm đáy là \(O\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trung điểm của \(SA,\,SB,\,SC,\,SD\). Hình hộp có đáy là \(MNPQ\), đáy kia là \(M'N'P'Q'\) với \(M'\) là trung điểm của \(AO\). Gọi \({V_1}\) là thể tích khối chóp \(S.ABCD\), \({V_2}\) là thể tích khối hộp \(MNPQ.M'N'P'Q'\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Đặt \(AB = a,\,SO = h \Rightarrow {V_1} = \frac{1}{3}h{a^2}\).
Do \(M,\,M'\) lần lượt là trung điểm của \(SA,\,OA \Rightarrow MM'{\rm{//}}SO,\,MM' = \frac{1}{2}h\).
Do \(M,\,N\) lần lượt là trung điểm của \(SA,\,SB \Rightarrow MN{\rm{//}}AB,\,MN = \frac{1}{2}a\), suy ra \(MNPQ.M'N'P'Q'\) là hình hộp chữ nhật nên \({V_2} = {\left( {\frac{1}{2}a} \right)^2}\frac{1}{2}h = \frac{{h{a^2}}}{8}\).
Khi đó \(\frac{{{V_1}}}{{{V_2}}} = \frac{{h{a^2}}}{3}.\frac{8}{{h{a^2}}} = \frac{8}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải
Đồ thị hàm số có \[2\] cực đại là \[\left( { - 1;\,0} \right)\] và \[\left( {1;\,0} \right)\]; \[1\] cực tiểu là \[\left( {0;\, - 1} \right)\]
\[ \Rightarrow \] đáp án C thoả mãn.

Lời giải

Lời giải

Tập xác định: \(D = \left[ { - 3;3} \right]\).
Hàm số liên tục trên \(\left[ { - 3;3} \right]\).
\(y' = \frac{{ - x}}{{\sqrt {9 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 0 \in \left[ { - 3;3} \right]\).
\(y\left( 0 \right) = 3;y\left( { - 3} \right) = 0;y\left( 3 \right) = 0\).
Vậy \[\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = 3 = y\left( 0 \right)\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP