Lời giải
Đặt \(AB = a,\,SO = h \Rightarrow {V_1} = \frac{1}{3}h{a^2}\).
Do \(M,\,M'\) lần lượt là trung điểm của \(SA,\,OA \Rightarrow MM'{\rm{//}}SO,\,MM' = \frac{1}{2}h\).
Do \(M,\,N\) lần lượt là trung điểm của \(SA,\,SB \Rightarrow MN{\rm{//}}AB,\,MN = \frac{1}{2}a\), suy ra \(MNPQ.M'N'P'Q'\) là hình hộp chữ nhật nên \({V_2} = {\left( {\frac{1}{2}a} \right)^2}\frac{1}{2}h = \frac{{h{a^2}}}{8}\).
Khi đó \(\frac{{{V_1}}}{{{V_2}}} = \frac{{h{a^2}}}{3}.\frac{8}{{h{a^2}}} = \frac{8}{3}\).
về câu hỏi!